Abstract
By using the APW + lo approach within the context of density functional theory, the purpose of this research is to investigate the differences between the bulk and monolayer forms of AgN. An APW + lo approach, takes into account both electrons (core and valence) in a self-consistent manner throughout the process of full-potential treatment. A generalized gradient approximation and a structural model were used to conduct the analyses on the structural electronic, magnetic, and optical characteristics. Half-metallicity could be seen in the bulk form of the compound with an energy gap of 2.23 eV in the spin-up channel and an equilibrium lattice constant of 8.23 Å. In addition, the half-metallic behavior was maintained even after the crossover to the monolayer, which had an energy gap of 1.90 eV. In order to determine the band structures and the density of states that demonstrate the half-metallic character of the material, it is important to carry out an examination of the material's electronic properties. Rendering to the Slater-Pauling statute (Zt-4), the total magnetic moment equals 2 µB for each unit cell. The effect of the electric field and biaxial strain on a monolayer of AgN was also studied to calculate electronic, magnetic, and frequency-dependent optical properties such as, dielectric functions, reflectivity, absorption, optical conductivity, and energy loss. The findings highlighted that the AgN's monolayer is promise for spintronics applications.
Similar content being viewed by others
References
J M K Al-zyadi, H I Asker and K L Yao Phys. E Low-Dimens. Syst. Nanostruct. 122 1 (2020)
R A de Groot, F M Mueller, P G van Engen and K H J Buschow Phys. Rev. Lett. 50 2024 (1983)
J M D Coey and M Venkatesan Phys. Rev. Lett. 85 3914 (2000)
C M Fang, G A de Wijs and R A de Groot J. Appl. Phys. 91 8340 (2002)
M Zhou, X W D Lou and Y Xie Nano Today 8 598 (2013)
X Duan, C Wang, A Pan, R Yu and X Duan Chem. Soc. Rev. 44 8859 (2015)
J Deng, H Li, J Xiao, Y Tu, D Deng, H Yang, H Tian, J Li, P Ren and X Bao Energy Environ. Sci. 8 1594 (2015)
B Anasori, M R Lukatskaya and Y Gogotsi Nat. Rev. Mater. 2 16098 (2017)
Y Sun, S Gao and Y Xie Chem. Soc. Rev. 43 530 (2014)
E Pomerantseva and Y Gogotsi Nat. Energy 2 17089 (2017)
Y Zheng, T Zhou, X Zhao, W K Pang, H Gao, S Li, Z Zhou, H Liu and Z Guo Adv. Mater. 29 1700396 (2017)
Y Dou, L Zhang, X Xu, Z Sun, T Liao and S X Dou Chem. Soc. Rev. 46 7338 (2017)
C Tan and H Zhang Soc. Chem. Rev. 44 2713 (2015)
L Peng et al Nat. Commun. 8 15139 (2017)
L Zhuang, L Ge, Y Yang, M Li, Y Jia, X Yao and Z Zhu Adv. Mater. 29 1606793 (2017)
S Cao, J Low, J Yu and M Jaroniec Adv. Mater. 27 2150 (2015)
S Lin, Y Chui, Y Li and S P Lau FlatChem 2 15 (2017)
A K Geim and I V Grigorieva Nature 499 7459 419 (2013)
J M K Al-zyadi, W A Abed and A H Ati Phys. Lett. A 411 127572 (2021)
J M K Al-zyadi and H I Asker J. Electron. Spectrosc. Relat. Phenom. 249 147060 (2021)
J M K Al-zyadi, A H Ati and K L Yao Appl. Phys. A 126 8 1 (2020)
J M K Al-zyadi J. Magn. Magn. Mater. 330 1 (2013)
D J Late, B Liu, H S S R Matte, C N R Rao and V P Dravid Adv. Funct. Mater. 22 1894 (2012)
X Zhou et al 2D Mater. 4 025048 (2017)
W Zhang, Z Huang, W Zhang and Y Li Nano Res. 7 1731 (2014)
Q Yang, W Lengauer, T Koch, M Scheerer and I Smid J. Alloys Compd. 309 L5 (2000)
X Lu, M Selleb and B Y Sundman Acta Mater. 55 1215 (2007)
P Ojha, M Aynyas and S P Sanyal J. Phys. Chem. Solids 68 148 (2007)
M Boota Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage (Philadelphia: Drexel University) (2017)
E I Isaev, S I Simak, I A Abrikosov, R Ahuja, Y K Vekilov, M I Katsnelson, A I Lichtenstein and B Johansson Appl. Phys. 101 123519 (2007)
X J Chen et al Proc. Natl. Acad. Sci. USA 102 3198 (2005)
D Sarmah and A Kumar Conducting Polymer-Based Energy Storage Materials (Boca Raton: CRC Press) (2019)
P S Urbankowski Synthesis of Two-Dimensional Transition Metal Nitrides (Philadelphia: Drexel University) (2019)
R D Paiva and R A Nogueira Phys. Rev. B 75 85105 (2007)
D Engin, C Kemal and C Y Oztekin Chin. Phys. Lett. 25 6 2154 (2008)
M Ashhadi, M S Hadavi and Z Sarri Phys. E Low-Dimens. Syst. Nano 87 312 (2017)
G K Madsen, P Blaha, K Schwarz, E Sjöstedt and L Nordström Phys. Rev. B 19 195134 (2001)
J M K Al-zyadi and A A H Nasser Phys. Lett. A 458 128594 (2023)
J M K Al-zyadi, A H Ati, A A Kadhim and F A Al-Saymari J. Electron. Mater. 51 5 2346 (2022)
L F Mattheiss and D R Hamann Phys. Rev. B 28 4227 (1983)
M Houmad, H Zaari, A Benyoussef, A El Kenz and H Ez-Zahraouy Carbon N. Y. 94 1021 (2015)
M E Monir, A Bahnes, A Boukortt, A Reguig and Y Mouchaal J. Magn. Magn. Mater. 497 166067 (2020)
C E Finlayson, D S Ginger, E Marx, N C Greenham, B K Ridley and P Dobson Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361 363–377 (2003)
G Murtaza and I Ahmad Phys. B Phys. Condens. Matter 406 3222 (2011)
P Miró, M Audiffred and T Heine Chem. Soc. Rev. 43 6537 (2014)
S Naji, A Belhaj, H Labrim, M Bhihi, A Benyoussef and A El Kenz Int. J. Quantum Chem. 114 463 (2014)
S Berrah, A Boukortt and H Abid Phys. E Low-Dimens. Syst. Nano 41 701 (2009)
A B Uluşan and A D Tataroğlu Silicon 10 5 2071 (2018)
K R Rajesh and C S Menon Mater. Lett. 53 4–5 329 (2002)
C H Henry, R A Logan and K A Bertness J. Appl. Phys. 52 7 4457 (1981)
A A Kadhim, J M K Al-zyadi and M A Nattiq Phys. Lett. A 442 128178 (2022)
K A Aly J. Mater. Sci. Mater. Electron. 33 6 2889 (2022)
M A Iqbal, M Malik, W Shahid, S Irfan, A C Alguno, K Morsy and J R Choi Sci. Rep. 12 1 (2022)
T I Al-Muhimeed, A Shafique, A A AlObaid, M Morsi and G Nazir Int. J. Energy Res. 45 13 19645 (2021)
A Levchuk PhD Thesis (Le Mans University, France) (2022)
C Jonin, E Salmon, Z Behel, F Ahmed, M B Kanoun, C Awada and P F Brevet Opt. Mater. 132 112857 (2022)
O Bajjou, A Najim, K Rahmani and M Khenfouch J. Mol. Mod. 28 1 (2022)
W Cai and V M Shalaev Optical Meta-materials (New York: Springer) (2010)
Y K Sato and M Terauchi J. Appl. Phys. 131 6 063104 (2022)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Al-zyadi, J.M.K., Jaafar, M.M. The effects of electric fields and biaxial strain on the structural, electrical, magnetical, and optical properties of bulk and monolayer AgN. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03312-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12648-024-03312-2