Skip to main content
Log in

The effects of electric fields and biaxial strain on the structural, electrical, magnetical, and optical properties of bulk and monolayer AgN

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

By using the APW + lo approach within the context of density functional theory, the purpose of this research is to investigate the differences between the bulk and monolayer forms of AgN. An APW + lo approach, takes into account both electrons (core and valence) in a self-consistent manner throughout the process of full-potential treatment. A generalized gradient approximation and a structural model were used to conduct the analyses on the structural electronic, magnetic, and optical characteristics. Half-metallicity could be seen in the bulk form of the compound with an energy gap of 2.23 eV in the spin-up channel and an equilibrium lattice constant of 8.23 Å. In addition, the half-metallic behavior was maintained even after the crossover to the monolayer, which had an energy gap of 1.90 eV. In order to determine the band structures and the density of states that demonstrate the half-metallic character of the material, it is important to carry out an examination of the material's electronic properties. Rendering to the Slater-Pauling statute (Zt-4), the total magnetic moment equals 2 µB for each unit cell. The effect of the electric field and biaxial strain on a monolayer of AgN was also studied to calculate electronic, magnetic, and frequency-dependent optical properties such as, dielectric functions, reflectivity, absorption, optical conductivity, and energy loss. The findings highlighted that the AgN's monolayer is promise for spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J M K Al-zyadi, H I Asker and K L Yao Phys. E Low-Dimens. Syst. Nanostruct. 122 1 (2020)

    Google Scholar 

  2. R A de Groot, F M Mueller, P G van Engen and K H J Buschow Phys. Rev. Lett. 50 2024 (1983)

    Article  ADS  Google Scholar 

  3. J M D Coey and M Venkatesan Phys. Rev. Lett. 85 3914 (2000)

    Article  Google Scholar 

  4. C M Fang, G A de Wijs and R A de Groot J. Appl. Phys. 91 8340 (2002)

    Article  ADS  Google Scholar 

  5. M Zhou, X W D Lou and Y Xie Nano Today 8 598 (2013)

    Article  Google Scholar 

  6. X Duan, C Wang, A Pan, R Yu and X Duan Chem. Soc. Rev. 44 8859 (2015)

    Article  Google Scholar 

  7. J Deng, H Li, J Xiao, Y Tu, D Deng, H Yang, H Tian, J Li, P Ren and X Bao Energy Environ. Sci. 8 1594 (2015)

    Article  Google Scholar 

  8. B Anasori, M R Lukatskaya and Y Gogotsi Nat. Rev. Mater. 2 16098 (2017)

    Article  ADS  Google Scholar 

  9. Y Sun, S Gao and Y Xie Chem. Soc. Rev. 43 530 (2014)

    Article  Google Scholar 

  10. E Pomerantseva and Y Gogotsi Nat. Energy 2 17089 (2017)

    Article  ADS  Google Scholar 

  11. Y Zheng, T Zhou, X Zhao, W K Pang, H Gao, S Li, Z Zhou, H Liu and Z Guo Adv. Mater. 29 1700396 (2017)

    Article  Google Scholar 

  12. Y Dou, L Zhang, X Xu, Z Sun, T Liao and S X Dou Chem. Soc. Rev. 46 7338 (2017)

    Article  Google Scholar 

  13. C Tan and H Zhang Soc. Chem. Rev. 44 2713 (2015)

    Article  Google Scholar 

  14. L Peng et al Nat. Commun. 8 15139 (2017)

    Article  ADS  Google Scholar 

  15. L Zhuang, L Ge, Y Yang, M Li, Y Jia, X Yao and Z Zhu Adv. Mater. 29 1606793 (2017)

    Article  Google Scholar 

  16. S Cao, J Low, J Yu and M Jaroniec Adv. Mater. 27 2150 (2015)

    Article  Google Scholar 

  17. S Lin, Y Chui, Y Li and S P Lau FlatChem 2 15 (2017)

    Article  Google Scholar 

  18. A K Geim and I V Grigorieva Nature 499 7459 419 (2013)

    Article  Google Scholar 

  19. J M K Al-zyadi, W A Abed and A H Ati Phys. Lett. A 411 127572 (2021)

    Article  Google Scholar 

  20. J M K Al-zyadi and H I Asker J. Electron. Spectrosc. Relat. Phenom. 249 147060 (2021)

    Article  Google Scholar 

  21. J M K Al-zyadi, A H Ati and K L Yao Appl. Phys. A 126 8 1 (2020)

    Article  Google Scholar 

  22. J M K Al-zyadi J. Magn. Magn. Mater. 330 1 (2013)

    Article  ADS  Google Scholar 

  23. D J Late, B Liu, H S S R Matte, C N R Rao and V P Dravid Adv. Funct. Mater. 22 1894 (2012)

    Article  Google Scholar 

  24. X Zhou et al 2D Mater. 4 025048 (2017)

    Article  Google Scholar 

  25. W Zhang, Z Huang, W Zhang and Y Li Nano Res. 7 1731 (2014)

    Article  Google Scholar 

  26. Q Yang, W Lengauer, T Koch, M Scheerer and I Smid J. Alloys Compd. 309 L5 (2000)

    Article  Google Scholar 

  27. X Lu, M Selleb and B Y Sundman Acta Mater. 55 1215 (2007)

    Article  ADS  Google Scholar 

  28. P Ojha, M Aynyas and S P Sanyal J. Phys. Chem. Solids 68 148 (2007)

    Article  ADS  Google Scholar 

  29. M Boota Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage (Philadelphia: Drexel University) (2017)

    Google Scholar 

  30. E I Isaev, S I Simak, I A Abrikosov, R Ahuja, Y K Vekilov, M I Katsnelson, A I Lichtenstein and B Johansson Appl. Phys. 101 123519 (2007)

    Article  Google Scholar 

  31. X J Chen et al Proc. Natl. Acad. Sci. USA 102 3198 (2005)

    Article  ADS  Google Scholar 

  32. D Sarmah and A Kumar Conducting Polymer-Based Energy Storage Materials (Boca Raton: CRC Press) (2019)

    Google Scholar 

  33. P S Urbankowski Synthesis of Two-Dimensional Transition Metal Nitrides (Philadelphia: Drexel University) (2019)

    Book  Google Scholar 

  34. R D Paiva and R A Nogueira Phys. Rev. B 75 85105 (2007)

    Article  Google Scholar 

  35. D Engin, C Kemal and C Y Oztekin Chin. Phys. Lett. 25 6 2154 (2008)

    Article  Google Scholar 

  36. M Ashhadi, M S Hadavi and Z Sarri Phys. E Low-Dimens. Syst. Nano 87 312 (2017)

    Article  ADS  Google Scholar 

  37. G K Madsen, P Blaha, K Schwarz, E Sjöstedt and L Nordström Phys. Rev. B 19 195134 (2001)

    Article  ADS  Google Scholar 

  38. J M K Al-zyadi and A A H Nasser Phys. Lett. A 458 128594 (2023)

    Article  Google Scholar 

  39. J M K Al-zyadi, A H Ati, A A Kadhim and F A Al-Saymari J. Electron. Mater. 51 5 2346 (2022)

    Article  ADS  Google Scholar 

  40. L F Mattheiss and D R Hamann Phys. Rev. B 28 4227 (1983)

    Article  ADS  Google Scholar 

  41. M Houmad, H Zaari, A Benyoussef, A El Kenz and H Ez-Zahraouy Carbon N. Y. 94 1021 (2015)

    Article  Google Scholar 

  42. M E Monir, A Bahnes, A Boukortt, A Reguig and Y Mouchaal J. Magn. Magn. Mater. 497 166067 (2020)

    Article  Google Scholar 

  43. C E Finlayson, D S Ginger, E Marx, N C Greenham, B K Ridley and P Dobson Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361 363–377 (2003)

    Article  ADS  Google Scholar 

  44. G Murtaza and I Ahmad Phys. B Phys. Condens. Matter 406 3222 (2011)

    Article  ADS  Google Scholar 

  45. P Miró, M Audiffred and T Heine Chem. Soc. Rev. 43 6537 (2014)

    Article  Google Scholar 

  46. S Naji, A Belhaj, H Labrim, M Bhihi, A Benyoussef and A El Kenz Int. J. Quantum Chem. 114 463 (2014)

    Article  Google Scholar 

  47. S Berrah, A Boukortt and H Abid Phys. E Low-Dimens. Syst. Nano 41 701 (2009)

    Article  ADS  Google Scholar 

  48. A B Uluşan and A D Tataroğlu Silicon 10 5 2071 (2018)

    Article  Google Scholar 

  49. K R Rajesh and C S Menon Mater. Lett. 53 4–5 329 (2002)

    Article  ADS  Google Scholar 

  50. C H Henry, R A Logan and K A Bertness J. Appl. Phys. 52 7 4457 (1981)

    Article  ADS  Google Scholar 

  51. A A Kadhim, J M K Al-zyadi and M A Nattiq Phys. Lett. A 442 128178 (2022)

    Article  Google Scholar 

  52. K A Aly J. Mater. Sci. Mater. Electron. 33 6 2889 (2022)

    Article  Google Scholar 

  53. M A Iqbal, M Malik, W Shahid, S Irfan, A C Alguno, K Morsy and J R Choi Sci. Rep. 12 1 (2022)

    Article  Google Scholar 

  54. T I Al-Muhimeed, A Shafique, A A AlObaid, M Morsi and G Nazir Int. J. Energy Res. 45 13 19645 (2021)

    Article  Google Scholar 

  55. A Levchuk PhD Thesis (Le Mans University, France) (2022)

  56. C Jonin, E Salmon, Z Behel, F Ahmed, M B Kanoun, C Awada and P F Brevet Opt. Mater. 132 112857 (2022)

    Article  Google Scholar 

  57. O Bajjou, A Najim, K Rahmani and M Khenfouch J. Mol. Mod. 28 1 (2022)

    Article  Google Scholar 

  58. W Cai and V M Shalaev Optical Meta-materials (New York: Springer) (2010)

    Google Scholar 

  59. Y K Sato and M Terauchi J. Appl. Phys. 131 6 063104 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabbar M. Khalaf Al-zyadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-zyadi, J.M.K., Jaafar, M.M. The effects of electric fields and biaxial strain on the structural, electrical, magnetical, and optical properties of bulk and monolayer AgN. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03312-2

Keywords

Navigation