Skip to main content
Log in

Some reentrant and compensation characteristics of a defective mixed-spin Ising bilayer graphene-like structure

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have performed the finite cluster approximation, to explore some interesting characteristics of a bond-diluted mixed-spin Ising bilayer graphene-like structure, composed of a ferrimagnetically alternating A-layer with spin-3/2 and B-layer with spin-1. The implication of the diluted exchange couplings (JA, JB), as well as the crystal fields (DA, DB) on the phase diagrams and magnetizations, have been evaluated. In the pure case (pS = pσ = 1.0), compensation points arise only if JB exceeds a JA-dependent threshold value. The inclusion of defect shows that the compensation points are favored under the pS effect, contrarily to pσ awakening the JB strength, which destroys the compensation. By introducing the crystal fields, we have uncovered the possibility of a first-order transition under the DB effect. Finally, an unexpected reentrance has been identified, regardless of the bond concentrations (pS, pσ) or crystal fields (DA, DB) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A K Geim and K S Novoselov Nat. Mater. 6 183 (2007)

    Article  ADS  Google Scholar 

  2. Y Zhu, S Murali, W Cai, X Li and J W Suk Mater. 22 3906 (2010)

    Google Scholar 

  3. C Lee, X D Wei, J W Kysar and J Hone Science 321 385 (2008)

    Article  ADS  Google Scholar 

  4. K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos and A A Firsov Nature 438 197 (2005)

    Article  ADS  Google Scholar 

  5. R R Nair, P Blake, A N Grigorenko, K S Novoselov, T J Booth, T Stauber, N M R Peres and A K Geim Science 320 1308 (2008)

    Article  ADS  Google Scholar 

  6. W Tian and X Y Zhang Nanotechnol. 10 3 (2016)

    Google Scholar 

  7. X Liu and C Z Wang J. Phys. Chem. C 118 19123 (2014)

    Article  Google Scholar 

  8. X Liu, C Z Wang, M Hupalo and H Q Lin Rev. B 90 155444 (2014)

    Article  Google Scholar 

  9. A Avsar, H Ochoa, F Guinea and B Özyilmaz Mod. Phys. 92 021003 (2020)

    Article  ADS  Google Scholar 

  10. I Choudhuri Mater. 31 8260 (2019)

    Google Scholar 

  11. E C Ahn npj 2D Mater Appl. 4 17 (2020)

    Article  Google Scholar 

  12. W Jiang, Y N Wang, A B Guo, Y Y Yang and K L Shi Carbon 110 41 (2016)

    Article  Google Scholar 

  13. T Kaneyoshi J. Phys. Chem. Solids 150 109880 (2021)

    Article  Google Scholar 

  14. A Boubekri, Z Elmaddahi, A Farchakh and M El Hafidi Phys. B 626 413526 (2022)

    Article  Google Scholar 

  15. M Charlebois and D Sénéchal Rev. B 91 035132 (2015)

    Article  Google Scholar 

  16. K Szalowski J. Magn. Magn. Mater. 382 318 (2015)

    Article  ADS  Google Scholar 

  17. R Masrour and A Jabar J. Magn. Magn. Mater. 426 225 (2017)

    Article  ADS  Google Scholar 

  18. B C Li, D Lv, W Wang, L Sun, Z M Hao and J Bao Commun. Theor. Phys. 75 045702 (2023)

    Article  ADS  Google Scholar 

  19. D Lv, J C Liu, F Zhang and D Z Zhang J. of Mol. Gr. Model. 109 108032 (2021)

    Article  Google Scholar 

  20. Y An, W Wang, L Sun and B C Li Micro Nanostr. 171 207429 (2022)

    Article  Google Scholar 

  21. C H Lewenkopf and E R Mucciolo J. Comput. Electron. 12 203 (2013)

    Article  Google Scholar 

  22. Q Guo, R Ovcharenko and B Paulus Theory Simul. 5 2100621 (2022)

    Article  Google Scholar 

  23. F S Bruckmann, C M Ledur, I Z da Silva, G L Dotto and C R B Rhoden J. Mol. Liquids 353 118837 (2022)

    Article  Google Scholar 

  24. G Salussolia and E Barbieri Phys. Solids 134 103764 (2020)

    Article  Google Scholar 

  25. P B Agarwal, P Paulchowdhury and A Mukherjee Today Proc. 48 616 (2022)

    Google Scholar 

  26. G Hwang, T Kim and J Shin J. Ind. Eng. Chem. 101 430 (2021)

    Article  Google Scholar 

  27. W Fang, A L Hsu, Y Songa and J Kong Nanoscale 7 20335 (2015)

    Article  ADS  Google Scholar 

  28. A V Rozhkov, A O Sboychakov, A L Rakhmanov and F Nori Phys. Rep. 648 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y Y Zhang, C M Wang, Y Cheng and Y Xiang Carbon 49 4511 (2011)

    Article  Google Scholar 

  30. N R Abdullah, H O Rashid, A Manolescu and V Gudmundsson Surf. Interf. 21 100740 (2020)

    Article  Google Scholar 

  31. E McCann and M Koshino Rep. Prog. Phys. 76 056503 (2013)

    Article  ADS  Google Scholar 

  32. B L Huang, C P Chuu and M F Lin Sci. Rep. 9 859 (2019)

    Article  ADS  Google Scholar 

  33. Y Mao and J Zhong Nanotechnology 19 205708 (2008)

    Article  ADS  Google Scholar 

  34. J Xu, T Zhu and Y K Luo Rev. Lett. 121 127703 (2018)

    Article  ADS  Google Scholar 

  35. X Zhai and Y M Blanter Phys. Rev. B 106 075425 (2022)

    Article  ADS  Google Scholar 

  36. Y Cao, V Fatemi, S Fang et al Nature 556 43 (2018)

    Article  ADS  Google Scholar 

  37. Y Cao, V Fatemi, A Demir et al Nature 556 80 (2018)

    Article  ADS  Google Scholar 

  38. A R Urade, I Lahiri and K S Suresh JOM 75 614 (2023)

    Article  ADS  Google Scholar 

  39. R Nair, M Sepioni, I L Tsai et al Nature Phys 8 199 (2012)

    Article  ADS  Google Scholar 

  40. J Ma and D Alfè Rev. B 80 033407 (2009)

    Article  Google Scholar 

  41. P T Araujo, M Terrones and M S Dresselhaus Mater. Today 15 98 (2012)

    Article  Google Scholar 

  42. X Q Tian, M Kiani, Y D Wei, N Feng, Z R Gong and X R Wang Mater. 33 2090 (2021)

    Google Scholar 

  43. S Mondal, Y Lin, D Polley, C Su, A Zettl, S Salahuddin and J Bokor ACS Nano 16 9620 (2022)

    Article  Google Scholar 

  44. X H Luo, W Wang, D D Chen and S Y Xu Physica B 491 51 (2016)

    Article  ADS  Google Scholar 

  45. D Lv, J C Liu, F Zhang and D Z Zhang J. of Mol. Gr. Modell. 109 108032 (2021)

    Article  Google Scholar 

  46. J J Palacios and F Ynduráin Phys. Rev. B 85 245443 (2012)

    Article  ADS  Google Scholar 

  47. K Kishimoto and S Okada Surface Science 644 18 (2016)

    Article  ADS  Google Scholar 

  48. N Şarlı, S Akbudak and M R Ellialtıoğlu Physica B 452 18 (2014)

    Article  ADS  Google Scholar 

  49. W Jiang, Y Y Yang and A B Guo Carbon 95 190 (2015)

    Article  Google Scholar 

  50. M Keskin and M Ertaş J. Supercond. Nov. Magn. 30 3439 (2017)

    Article  Google Scholar 

  51. M Keskin and M Ertaş Physica A 496 79 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. M Ertaş and M Keskin Phys. Lett. A 376 2455 (2012)

    Article  ADS  Google Scholar 

  53. M Ertaş J. Phys. 56 807 (2018)

    MathSciNet  Google Scholar 

  54. R Masrour Eur. Phys. J. B 96 100 (2023)

    Article  ADS  Google Scholar 

  55. M Y Raïâ, R Masrour, M Hamedoun, J Kharbach, A Rezzouk and A Hourmatallah N Benzakour and K Bouslykhane Solid State Communications 355 114932 (2022)

    Article  Google Scholar 

  56. Y El Krimi and R Masrour Mater. Sci. Eng: B 284 115906 (2022)

    Article  Google Scholar 

  57. M Y Raïâ, R Masrour, M Hamedoun et al J. Mater. Sci.: Mater. Electron. 33 20229 (2022)

    Google Scholar 

  58. B Anastaziak, W Andrzejewska et al Sci. Rep. 12 1 (2022)

    Article  Google Scholar 

  59. B Anastaziak, H Głowiński, M Urbaniak, L Frąckowiak, F Stobiecki and P Kuświk Phys. Status Solidi 16 2100450 (2022)

    Google Scholar 

  60. N Maaouni, M Qajjour, A Mhirech and B Kabouchi J. Magn. Magn. Mater. 468 175 (2018)

    Article  ADS  Google Scholar 

  61. R Masrour, L Bahmad and M Hamedoun J. Supercond. Nov. Magn. 27 535 (2014)

    Article  Google Scholar 

  62. A Benyoussef and N Boccara J. Phys. 44 1143 (1983)

    Article  Google Scholar 

  63. M Mouhib, S Bri and H Mounir Mag. 103 574 (2023)

    Google Scholar 

  64. M Mouhib, S Bri and A Tilali J. Supercond. Nov. Magn. 36 237 (2023)

    Article  Google Scholar 

  65. M Mouhib and S Bri J. Supercond. Nov. Magn. 35 555 (2022)

    Article  Google Scholar 

  66. M Mouhib, S Bri and H Mounir J. Magn. Magn. Mater. 564 170128 (2022)

    Article  Google Scholar 

  67. M Mouhib, S Bri and M D Belrhiti Phys. J. Plus 138 371 (2023)

    Article  Google Scholar 

  68. M Mouhib and S Bri Phys. J. B 96 116 (2023)

    ADS  Google Scholar 

  69. F C SáBarreto, I P Fittipaldi and B Zeks Ferroelectrics 39 1103 (1981)

    Article  ADS  Google Scholar 

  70. M Mouhib and S Bri J. Magn. Magn. Mater. 585 171105 (2023)

    Article  Google Scholar 

  71. T Kaneyoshi Physica B 608 411854 (2021)

    Article  Google Scholar 

  72. T Kaneyoshi J. Supercond. Nov. Magn. 32 3191 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mouhib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhib, M., Bri, S., Mounir, H. et al. Some reentrant and compensation characteristics of a defective mixed-spin Ising bilayer graphene-like structure. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03249-6

Keywords

Navigation