Skip to main content
Log in

Investigation of Seebeck coefficient in organic materials under a magnetic field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Due to environmental issues and energy crisis, the developments of thermoelectric (TE) materials have attracted tremendous attraction for they can convert free heat to electrical energy. To improve the performances of TE materials, we reviewed the relative researches on TE properties as well as the studies on magnetic-field effect of organic materials in recent years. Based on the researches, Seebeck coefficient is a key factor for TE performances. In this work, we applied a 50 × 10 × 10 organic lattice with lattice constant a = 1 nm. Considering the spin-related hopping, we researched Seebeck coefficient of organic materials by the master equation method. To study the performances of Seebeck coefficient, we discuss the influences of the temperature, the reorganization energy and the energetic disorder strength. Especially, when we applied a magnetic field, Seebeck coefficient first increases with the magnetic field and finally reaches a saturated value. Our investigations will be a helpful reference to understand TE properties of organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R Ganieva, T Galandarova and R Agalarov Adv. Biol. Earth Sci. 8 288 (2023)

    Google Scholar 

  2. P Ziarati, S Tajik, B Sawicka, L Cruz-Rodriguez, V Vambol and S Vambol Adv. Biol. Earth Sci. 8 129 (2023)

    Google Scholar 

  3. A Nasibova Adv. Biol. Earth Sci. 8 140 (2023)

    Google Scholar 

  4. J J Xu et al. Heliyon 9 e19061 (2023)

    Article  Google Scholar 

  5. Y Y Wu, X L Zhu, H Y Yang, Z G Wang, Y H Li and B T Wang Chin. Phys. B 29 087202 (2020)

    Article  ADS  Google Scholar 

  6. S H Tan, J Zeng, X F Peng and K Q Chen J. Phys.: Condens. Matter 35 373001 (2023)

    Google Scholar 

  7. G H Kim, L Shao, K Zhang and K P Pipe Nat. Mater. 12 719 (2013)

    Article  Google Scholar 

  8. L Xie, W Song, J F Ge, B C Tang, X L Zhang, T Wu and Z Y Ge Nano Energy 82 105770 (2021)

    Article  Google Scholar 

  9. J E Mink, R M Qaisi, B E Logan and M M Hussain NPG Asia Mater 6 e89 (2014)

    Article  Google Scholar 

  10. R Shehroz, A Asghar and S Iqbal Energy Harvesting Devices Advances in Hybrid Conducting Polymer Technology, (Cham: Springer) p 101–124 (2021)

    Google Scholar 

  11. K Harada, M Sumino, C Adachi, S Tanaka and K Miyazaki Appl. Phys. Lett. 96 253 (2010)

    Google Scholar 

  12. Z L Yu, Y Q Zhao, B Liu and M Q Cai Appl. Surf. Sci. 497 143787 (2019)

    Article  Google Scholar 

  13. B Y Yan, X T Zhang, L Liu, L J Tang, F F Wang, Y L Wang and F J Yang Indian J. Phys. 96 1985 (2022)

    Article  ADS  Google Scholar 

  14. L M Cowen, J Atoyo, M J Carnie, D Baran and B C Schroeder J. Solid State Sci. Technol. 6 N3080 (2017)

    Article  Google Scholar 

  15. S Peng, D Wang, J Lu, M He, C Xu, Y Li and S Zhu J. Polym. Environ. 25 1208 (2017)

    Article  Google Scholar 

  16. Q Zhang, Y Sun, W Xu and D Zhu Adv. Mater. 26 6829 (2014)

    Article  Google Scholar 

  17. D Wang, L Tang, M Long and Z Shuai J. Chem. Phys. 131 224704 (2009)

    Article  ADS  Google Scholar 

  18. S Lee, S Kim, A Pathak, A Tripathi, T Qiao, Y Lee, H Lee and H Y Woo Macromol. Res. 28 531 (2020)

    Article  Google Scholar 

  19. S P Lin et al. Commun Mater 3 44 (2022)

    Article  Google Scholar 

  20. J H Hong et al. Org. Electron. 108 106582 (2022)

    Article  Google Scholar 

  21. Y M Sun, C A Di, W Xu and D B Zhu, Adv. Electron. Mater. 1800825 (2019)

  22. R Sánchez and M Büttiker Europhys. Lett. 100 47008 (2012)

    Article  ADS  Google Scholar 

  23. X Chen, K Zhang, Z M Hassan, E Redel and H Baumgart J. Phys.: Condens. Matter 34 404001 (2022)

    ADS  Google Scholar 

  24. M Scholdt, H Do, J Lang, A Gall, A Colsmann, U Lemmer, J D Koenig, M Winkler and H Boettner J. Electron. Mater. 39 1589 (2010)

    Article  ADS  Google Scholar 

  25. Z A Durrani J. Appl. Phys. 115 094508 (2014)

    Article  ADS  Google Scholar 

  26. P Z Jia, Z X Xie, Y X Deng, Y Zhang, L M Tang, W X Zhou and K Q Chen Appl. Phys. Lett. 121 043901 (2022)

    Article  ADS  Google Scholar 

  27. D Mendels and N Tessler J. Phys. Chem. Lett. 5 3247 (2014)

    Article  Google Scholar 

  28. H J Xue, T Q Lü, H C Zhang, H T Yin, L Cui and Z L He Chin. Phys. B 21 037201 (2012)

    Article  ADS  Google Scholar 

  29. B Szukiewicz and K Wysokiński Acta Phys. Pol. A 126 1159 (2014)

    Article  ADS  Google Scholar 

  30. C J Yao, H L Zhang and Q C Zhang Polymers 11 107 (2019)

    Article  Google Scholar 

  31. Y J Zeng, Y Y Liu, H Pan, Z K Ding, W X Zhou, L M Tang, B Li and K Q Chen Front. Phys. 10 823284 (2022)

    Article  Google Scholar 

  32. J Wang, X H Cao, Y J Zeng and N N Luo Surf. Sci. 612 155914 (2023)

    Article  Google Scholar 

  33. X K Chen, E M Zhang, D Wu and K Q Chen Phys. Rev. Applied 19 044052 (2023)

    Article  ADS  Google Scholar 

  34. H Pan, Z K Ding, B W Zeng, N N Luo, J Zeng, L M Tang and K Q Chen Phys. Rev. B 107 104303 (2023)

    Article  ADS  Google Scholar 

  35. D Wu, L Huang, P Z Jia, X H Cao, Z Q Fan, W X Zhou and K Q Chen Appl. Phys. Lett. 119 063503 (2021)

    Article  ADS  Google Scholar 

  36. X H Cao, D Wu, J Zeng, N N Luo, W X Zhou, L M Tang and K Q Chen Appl. Phys. Lett. 119 263901 (2021)

    Article  ADS  Google Scholar 

  37. R Liu, Y F Ge, D Wang and Z G Shuai CCS Chem. 3 1477 (2021)

    Article  Google Scholar 

  38. D Huang et al. J. Am. Chem. Soc. 139 13013 (2017)

    Article  Google Scholar 

  39. P Sheng, Y Sun, F Jiao, C Liu, W Xu and D Zhu Synth. Met. 188 111 (2014)

    Article  Google Scholar 

  40. J Li, Y Du, R Jia, J Xu and S Z Shen Materials (Basel) 10 780 (2017)

    Article  ADS  Google Scholar 

  41. Q Zhang, Y Sun, F Jiao, J Zhang, W Xu and D Zhu Synth. Met. 162 788 (2012)

    Article  Google Scholar 

  42. Y Sun, L Qiu, L Tang, H Geng, H Wang, F Zhang, D Huang, W Xu, P Yue, Y S Guan, F Jiao, Y Sun, D Tang, C A Di, Y Yi and D Zhu Adv. Mater. 28 3351 (2016)

    Article  Google Scholar 

  43. Y Liu, W Shi, T Zhao, D Wang and Z Shuai J. Phys. Chem. Lett. 10 2493 (2019)

    Article  Google Scholar 

  44. T L Francis, Ö Mermer, G Veeraraghavan and M Wohlgenannt New J. Phys. 6 185 (2004)

    Article  ADS  Google Scholar 

  45. P Desai, P Shakya, T Kreouzis and W P Gillin Phys. Rev. B 76 235202 (2007)

    Article  ADS  Google Scholar 

  46. R N Mahato, H Lülf, M H Siekman, S P Kersten, P A Bobbert, M P de Jong, L De Cola and W G van der Wiel Science 341 257 (2013)

    Article  ADS  Google Scholar 

  47. L J Tang, X T Zhang, B Y Yan, L Liu, C H Wang, Q Fu and F J Yang Mod. Phys. Lett. B 33 1950215 (2019)

    Article  ADS  Google Scholar 

  48. F Yang, X Zhang, B Yan, J Lin, L Liu, L Tang, F Wang and Y Li Mod. Phys. Lett. B 37 2350102 (2023)

    Article  ADS  Google Scholar 

  49. J J M van der Holst Three-Dimensional Modeling of Charge Transport, Injection and Recombination in Organic Light-Emitting Diodes (Eindhoven: Eindhoven University of Technology) (2010)

    Google Scholar 

  50. R A Marcus Rev. Mod. Phys. 65 599 (1993)

    Article  ADS  Google Scholar 

  51. Z G Yu, D L Smith, A Saxena, R L Martin and A R Bishop Phys. Rev. Lett. 84 721 (2000)

    Article  ADS  Google Scholar 

  52. Z G Yu, D L Smith, A Saxena, R L Martin and A R Bishop Phys. Rev. B 63 085202 (2001)

    Article  ADS  Google Scholar 

  53. W F Pasveer, J Cottaar, C Tanase, R Coehoorn, P A Bobbert, P W M Blom, D M de Leeuw and M A J Michels Phys. Rev. Lett. 94 206601 (2005)

    Article  ADS  Google Scholar 

  54. F J Yang, W Qin and S J Xie J. Chem. Phys. 140 144110 (2014)

    Article  ADS  Google Scholar 

  55. F J Yang and S J Xie Chin. Phys. B 23 097306 (2014)

    Article  ADS  Google Scholar 

  56. S Kera et al. J. Phys. Chem. C 117 22428 (2013)

    Article  Google Scholar 

  57. A Fuchs, T Steinbrecher, M S Mommer, Y Nagata, M Elstner and C Lennartz Phys. Chem. Chem. Phys. 14 4259 (2012)

    Article  Google Scholar 

  58. Z G Shuai, H Geng, W Xu, Y Liao and J M Andre Chem. Soc. Rev. 43 2662 (2014)

    Article  Google Scholar 

  59. L J Wang, G J Nan, X D Yang, Q Peng, Q K Li and Z G Shuai Chem. Soc. Rev. 39 423 (2010)

    Article  Google Scholar 

  60. N D Lu, L Li and M Liu Org. Electron. 16 113 (2015)

    Article  Google Scholar 

  61. J B Niu, N D Lu, L Li and M Liu Phys. Lett. A 378 3579 (2014)

    Article  ADS  Google Scholar 

  62. N D Lu, L Li and M Liu Phys. Rev. B 91 195205 (2015)

    Article  ADS  Google Scholar 

  63. N D Lu, L Li and M Liu Phys. Chem. Chem. Phys. 18 19503 (2016)

    Article  Google Scholar 

  64. Y Roichman and N Tessler Appl. Phys. Lett. 80 1948 (2002)

    Article  ADS  Google Scholar 

  65. Y Liu, L Xu, C Zhao, M Shao and B Hu Phys. Chem. Chem. Phys. 19 14793 (2017)

    Article  Google Scholar 

  66. O Bubnova, Z U Khan, A Malti, S Braun, M Fahlman, M Berggren and X Crispin Nat. Mater. 10 429 (2011)

    Article  ADS  Google Scholar 

  67. Y W Park Synth. Met. 45 173 (1991)

    Article  Google Scholar 

  68. L Xu, Y C Liu, M P Garrett, B B Chen and B Hu J. Phys. Chem. C 117 10264 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No.22206116 and No.11747056), the Shandong Provincial Natural Science Foundation (Grant No.ZR2022QB094) and the Research Program of Shandong Agriculture and Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, X., Wang, F. et al. Investigation of Seebeck coefficient in organic materials under a magnetic field. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03244-x

Keywords

Navigation