Skip to main content

Advertisement

Log in

Electronic, structural, magnetic and thermodynamic properties of the half-metallic ferromagnetic compounds containing chrome and tantalum Cr2TaZ (Z = Al, Ga and Sb)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A theoretical study of magnetic, electronic structure, mechanical and thermodynamic properties of Cr2TaZ (Z = Al, Ga and Sb) Heusler alloys has been extensively investigated by the full-potential linearized augmented plane wave (FP-LAPW) method with the Generalized Gradient Approximation (GGA). Structural parameters such as lattice constant \((a)\), bulk modulus \((B)\) and first pressure derivative of bulk modulus \(({B}^{,})\) were obtained by using the Murnaghan equation. The calculated lattice constants for Cr2TaAl, Cr2TaGa and Cr2TaSb alloys are for 61,029, 61,170 and 60,795 Å, respectively. It is found that the L21-type (AlCu2Mnl-type) structure is energetically more stable than the X-type (CuHg2Ti-type) structure due to the lower total energy. The results of elastic constants robustness show that the mechanical stability of Cr2TaZ (Z = Al, Ga and Sb) can be well-maintained. The calculated electronic band structure reveals the metallic nature of Cr2TaZ (Z = Al, Ga and Sb) and its total magnetic moment of 2.00 \({\mu }_{B}\) is mainly contributed by Cr atom from strong spin splitting effect, as indicated with the distinctive distributions of the density of states in two spin directions. Furthermore temperature and pressure dependence of thermodynamic properties of these materials have been examined in the ranges (0–1400 K) and (0–25 GPa), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W E Pickett and J S Moodera Phys. Today. 54 39 (2001)

    Article  ADS  Google Scholar 

  2. J de Boeck, et al. Semicond. Sci. Technol. 17 342 (2002)

    Article  ADS  Google Scholar 

  3. S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S von Molnar, M L Roukes and A Y Chtchelkanova D M Treger Science 294 1488 (2001)

    Google Scholar 

  4. G A Prinz Science 282 1660 (1998)

    Article  Google Scholar 

  5. Y Ohno, D K Young, B Beshoten, F Matsukura, H Ohno and D D Awschalom Nature 402 790 (1999)

    Article  ADS  Google Scholar 

  6. T Dietl, H Ohno and F Matsukura J Cibert and D Ferrand Science 287 1019 (2000)

    Google Scholar 

  7. I Asfour Indian J Phys 97 3901 (2023)

    Article  ADS  Google Scholar 

  8. I Galanakis Rev. B 66 134428 (2002)

    Article  Google Scholar 

  9. F Heusler Verhandlungen Dtsch. Phys. Ges. 5 219 (1903)

  10. R A de Groot and F M Mueller J. Buschow Phys. Rev. Lett. 50 2024 (1983)

    Article  ADS  Google Scholar 

  11. T Graf, G H Fecher, J Barth, J Winterlik and C Felser J. Phys. D Appl. Phys. 42 084003 (2009)

    Article  ADS  Google Scholar 

  12. R Jain, N Lakshmi, V Jain, V Jain, A R Chandra and K Venugopalan J. Magn. Magn. Mater. 448 278 (2018)

    Article  ADS  Google Scholar 

  13. H P Han Adv. Mater. Res. 690 590 (2013)

    Article  Google Scholar 

  14. M K Hussain, G Y Gao, K L Yao and J Supercond Novel Magn. 28 3285 (2015)

    Article  Google Scholar 

  15. M K Hussain, G Y Gao and K L Yao, Int. J. Mod. Phys. B 29 1550175 (2015)

  16. Z Yao Phys. Lett. 101 062402 (2012)

    Google Scholar 

  17. H Ai, X Liu, B Yang, X Zhang and M Zhao J. Phys. Chem. C 122 1846 (2018)

    Article  Google Scholar 

  18. T Sekimoto, K Kurosaki, H Muta and S Yamanaka J. Alloys Compd. 407 326 (2006)

    Article  Google Scholar 

  19. E P Wohlfahrth and K H J Bushow Ferromagnetic Materials, vol 4 (Amsterdam: Elsevier)) (1998)

    Google Scholar 

  20. X Dai, G Liu, G H Fecher, C Felser, Y Li and H Liu J. Appl. Phys. 105 07E901 (2009)

    Article  Google Scholar 

  21. P Blaha, K Schwarz and G K H Madsen D Kvasnicka and J Luitz WIEN2K, an Augmented Plane Wave þLocal orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz: Technische Universität, Wien, Austria) (2001)

    Google Scholar 

  22. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  23. I Asfour J. Supercond. Nov. Magn. 34 647 (2021)

    Article  Google Scholar 

  24. M Petersen, F Wagner, L Hufnagel, M Scheffler, P Blaha and K Schwarz Comput. Phys. Commun. 126 294 (2000)

    Article  ADS  Google Scholar 

  25. W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)

    Article  ADS  Google Scholar 

  26. J P Perdew, S Burke and Y Wang Phys. Rev. B 54 16533 (1996)

    Article  ADS  Google Scholar 

  27. P Guss, M E Foster and B M Wong J. Appl. Phys. 115 034908 (2014)

    Article  ADS  Google Scholar 

  28. Z Zada, et al. J. Mol. Struct. 1268 133698 (2022)

    Article  Google Scholar 

  29. Z Zada, A A Khan, R Zada, A H Reshak, G Murtaza and M Saqib J. Bila Indian J. Phys. 96 3151 (2022)

    Article  ADS  Google Scholar 

  30. Z Zada, A A Khan, A H Reshak, M Ismail, S Zada, G Murtaza, M Saqib, M M Ramli and J Bila J. Mol. Struct. 1252 132136 (2022)

    Article  Google Scholar 

  31. F D Murnaghan Proc. Natl. Acad. Sci. USA 30 244 (1944)

    Article  ADS  Google Scholar 

  32. I Asfour J. Supercond. Nov. Magn. 33 2837 (2020)

    Article  Google Scholar 

  33. I Asfour Indian J. Phys. 98 497 (2024)

    Article  ADS  Google Scholar 

  34. I Asfour, Pramana – J. Phys. 94 161 (2020)

    Article  ADS  Google Scholar 

  35. M A Ali, R Ullah, T I Al-Muhimeed, A A AlObaid, S Bibi, N A Kattan, N Rashid and G Murtaza Eur. Phys. J. Plus 136 568 (2021)

    Article  Google Scholar 

  36. M J Mehl Phys. Rev. B 47 2493 (1993)

    Article  ADS  Google Scholar 

  37. F Chu, Y He, D J Thome and T E Mitchell Scr. Metall. Mater. 33 1295 (1995)

    Article  Google Scholar 

  38. S A Dar, M A Ali and V Srivastava Eur. Phys. J. B 93 102 (2020)

    Article  ADS  Google Scholar 

  39. I Asfour and D Rached Mechanical Engineering 7 16 (2019)

    Google Scholar 

  40. J C Slater J. Phys. Chem. 41 3199 (1964)

    Article  Google Scholar 

  41. M K Hussain Materials Science and Engineering: B 264 114922 (2021)

    Article  Google Scholar 

  42. A M Mebed and M A Ali International Journal of Modern Physics B. 37 22350163 (2023)

    Article  ADS  Google Scholar 

  43. A Candan, G Ugur, Z Charifi, H Baaziz and M R Ellialtioglu J. Alloy. Comp. 560 215 (2013)

    Article  Google Scholar 

  44. M A Blanco, E Francisco and V Luana Comput. Phys. Commun. 158 57 (2004)

    Article  ADS  Google Scholar 

  45. I Asfour Russ. J. Phys. Chem. 97 2731 (2023)

    Article  Google Scholar 

  46. M A Ali, T Alshahrani and G Murtaza Mater. Sci. Semicond. Process. 127 105728 (2021)

    Article  Google Scholar 

  47. M. Florez, J.M. Recio, E. Francisco, M.A. Blanco and A. Martin Pendas Phys. Rev. B 66 144112 (2002)

  48. E Francisco Rev. B 63 094107 (2001)

    Article  Google Scholar 

  49. R Ullah, M A Ali and G Murtaza Mater. Sci. Semicond. Process. 122 105487 (2021)

    Article  Google Scholar 

  50. B Ali et al. Int. J. Quantum Chem. 124 e27294 (2023)

    Article  Google Scholar 

  51. R J Soulen et al. Science 282 85 (1998)

    Article  ADS  Google Scholar 

  52. M A Ali, R Ullah, S A Dar, G Murtaza, A Khan and A Mahmood Phys. Scr. 95 075705 (2020)

    Article  ADS  Google Scholar 

  53. J P Poirier Introduction to the Physics of the Earth's Interior, (Cambridge University Press, Oxford) p. 39 (2000)

  54. M A Ali, S A Dar, A A AlObaid, T I Al-Muhimeed, H H Hegazy, G Nazir and G Murtaza J. Phys. Chem. Solids. 159 110258 (2021)

    Article  Google Scholar 

  55. A T Petit and P L Dulong Ann. Chim. Phys. 10 395 (1819)

    Google Scholar 

  56. P Debye Ann. Phys. 397 89 (1912)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Asfour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfour, I. Electronic, structural, magnetic and thermodynamic properties of the half-metallic ferromagnetic compounds containing chrome and tantalum Cr2TaZ (Z = Al, Ga and Sb). Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03236-x

Keywords

Navigation