Skip to main content
Log in

Effect of tunnelling in double barrier nitride (AlGaN/GaN) heterojunction

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In a double-barrier heterostructure made of (AlGaN/GaN), the tunneling effect has been investigated, and the probability that electrons will pass through the barrier has been determined. As the temperature fluctuates, the likelihood of tunneling changes. Here, tunneling has been measured at a very low temperature. The heterostructure has demonstrated the possible distribution. The tunneling current for an AlGaN/GaN heterostructure with a double barrier of nitride has been tracked. The work proposes a model of trap-assisted tunneling that can quantitatively assess the impact of traps on the total current flowing through a heterostructure made of GaN, AlGaN, and GaN. The basis of the model is the expression of the occupation probability of the electron trapping centers in terms of thermal and tunneling exchange periods. (Kneissl M et al. in Nature Photonics 13: 233, 2019) The investigation focused on examining the tunneling effect within a double-barrier (AlGaN/GaN) heterostructure. The research aimed to determine the likelihood of electrons tunneling through the barriers, and this tunneling probability was assessed in the context of temperature variations. Specifically, the study conducted measurements of tunneling probability at an exceptionally low temperature of 77 K. The findings indicate that the probability of tunneling is temperature-dependent, with a particular emphasis on the conditions prevalent at very low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data were used for the research described in the manuscript.

References

  1. M Kneissl, T Seong, J Han and H Amano Nature Photonics 13 233 (2019).

    Article  ADS  Google Scholar 

  2. D Li, S Liu, Z Qian et al Adv. Mater. 34 2109765 (2022).

    Article  Google Scholar 

  3. J S ChenLoeb and J H Kim Environ. Sci. Water Res. Technol. 3 188 (2017).

    Article  Google Scholar 

  4. D Bayerl and E Kioupakis Appl. Phys. Lett. 115 131101 (2019).

    Article  ADS  Google Scholar 

  5. A Aiello, Y Wu, A Pandey et al Nano Lett. 19 7852 (2019).

    Article  ADS  Google Scholar 

  6. A A Toropov, E A Evropeitsev, M O Nestoklon et al Nano Lett. 20 158 (2020).

    Article  ADS  Google Scholar 

  7. F Wu, J Zhang, S Wang et al Opt. Mater. Express 5 2608 (2015).

    Article  ADS  Google Scholar 

  8. J M Barker, R Akis, T J Thornton and D K S M FerryGoodnick Phys B Condens. Matter 314 39 (2002).

    Article  ADS  Google Scholar 

  9. R Collazo, R Schlesser, A Roskowski, R F Davis and Z Sitar MRS Proceed. 743 102 (2002).

    Article  Google Scholar 

  10. M Wraback, H Shen, S Rudin and E Bellotti Phys. Status Solidi b 234 810 (2002).

    Article  ADS  Google Scholar 

  11. S Schmult, M J Manfra, A M Sergent, A Punnoose and H T Chou Phys. Status Solidi b 243 1706 (2006).

    Article  ADS  Google Scholar 

  12. Y Kawakami, X Q Shen, G Piao, M Shimizu and H Okumuraa J. Cryst. Growth 300 168 (2007).

    Article  ADS  Google Scholar 

  13. Y Wang, Q Wu, S Mao et al IEEE Electron Device Lett. 42 677 (2021).

    Article  ADS  Google Scholar 

  14. H Lu, X A Cao, S F LeBoeuf et al J. Crystal Growth 291 82 (2006).

    Article  ADS  Google Scholar 

  15. U K Mishra, P Parikh and Wu Yi-Feng Proceed. IEEE 90 1022 (2002).

    Article  Google Scholar 

  16. N Grandjean, J Massies, M Leroux et al MRS Internet J. Nitride Semicond. Res. 4 962 (1999).

    Article  Google Scholar 

  17. V Nagarajan, K M Chen, H Y Lim et al IEEE Trans. Nanotechnol. 19 405 (2020).

    Google Scholar 

  18. M J Manfra, K W Baldwin, A M Sergent et al Appl. Phys. Lett. 85 5394 (2004).

    Article  ADS  Google Scholar 

  19. B J Baliga Semicond. Sci. Technol. 28 074011 (2013).

    Article  ADS  Google Scholar 

  20. N Ikeda, Y Niiyama, H Kambayashi et al Proceed. IEEE 98 1151 (2010).

    Article  Google Scholar 

  21. S P DenBaars, D Feezell, K Kelchner et al Acta Mater. 61 945 (2013).

    Article  ADS  Google Scholar 

  22. C Gmachl, M Hock, S N Ng, C George and A Y Cho Appl. Phys. Lett. 77 3722 (2000).

    Article  ADS  Google Scholar 

  23. A Vardi, N Kheirodin, L Nevou et al Appl. Phys. Lett. 92 011112 (2008).

    Article  ADS  Google Scholar 

  24. E Baumann, F R Giorgetta, D Hofstetter et al Appl. Phys. Lett. 89 041106 (2006).

    Article  ADS  Google Scholar 

  25. X Rong, X Q Wang, G Chen et al Sci. Rep. 5 14386 (2015).

    Article  ADS  Google Scholar 

  26. S T M NakamuraMukaiSenoh J. Appl. Phys. 76 8189 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the researchers supporting project number (RSP2024R55), King Saud University, Riyadh, Saudi Arabia, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by [Jyoti Patil, Yogesh B. Khollam], [Umeash T. Nakate, Shoyebmohamad F. Shaikh,] and [Abdullah M. Al-Enizi, Pravin S. More]. The first draft of the manuscript was written by [Jyoti Patil] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Jyoti Patil contribute to this work.

Corresponding author

Correspondence to Jyoti Patil.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, J., Shaikh, S.F., Nakate, U.T. et al. Effect of tunnelling in double barrier nitride (AlGaN/GaN) heterojunction. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03234-z

Keywords

Navigation