Skip to main content
Log in

Nonlinear electron-acoustic waves in non-Maxwellian plasma: application in terrestrial magnetosphere

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nonlinear electron-acoustic waves (EAWs) and their propagation and interaction have been studied in a plasma consisting of hot (non-Maxwellian) and cold dynamic electrons with background ions. For electron-acoustic waves, we derived the Korteweg-de Vries (KdV) equation by taking into account the small amplitude limit. The generalized (r,q) distribution function, also known as the double spectral index velocity distribution function, has been used to carry out this derivation. We studied single and multisoliton solutions for electron-acoustic solitary waves (EASWs) by using Hirota’s bilinear technique. The model under consideration only supports rarefactive soliton. According to the numerical analysis, the plasma parameters r and q of hot electrons as well as the ratio of hot to cold electrons have a significant influence on altering the amplitude of electron-acoustic solitary waves. Using the auroral zone parametric values in general, the range of electric field amplitude for different hot electron distributions is calculated, which agrees with POLAR and FAST satellite observations of electric field amplitude. The interaction of the two solitons, as well as their sensitivity to propagation vectors, plasma parameters r and q, and density ratio, has been discussed. Especially, we estimate the spatial scale over which the nonlinear structures form in the auroral zone. The findings of this study should help researchers better understand how two electron-acoustic solitary waves interact in laboratory as well as in astrophysical plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. T H Stix Waves in Plasma (AIP, New York) (1992)

  2. K Watanabe and T Taniuti J. Phys. Soc. Japan 43 1819 (1977)

    Article  ADS  Google Scholar 

  3. F Anderegg, C F Driscoll, D H E Dubin, T M O’Neil and F Valentini Phys Plasmas 16 055705 (2009)

    Article  ADS  Google Scholar 

  4. M A Hellberg, R L Mace, R J Armstrong and G Karlstad J. Plasma Phys. 64 433 (2000)

    Article  ADS  Google Scholar 

  5. S Chowdhury, S Biswas, N Chakrabarti and R Pal Phys. Plasmas 24 062111 (2017)

    Article  ADS  Google Scholar 

  6. P K Shukla, L Stenflo and M A Hellberg Phys Rev. E 66 027403 (2002)

    Article  ADS  Google Scholar 

  7. R L Tokar and S P Gary Geophys. Res. Lett. 11 1180 (1984)

    Article  ADS  Google Scholar 

  8. S V Singh and G S Lakhina Planet. Space Sci. 49 107 (2000)

    Article  ADS  Google Scholar 

  9. N Dubouloz, R Pottelette, M Malingre and R A Treumann Geophys Res. Lett. 18 155 (1991)

    Article  ADS  Google Scholar 

  10. C S Dillard, I Y Vasko, F S Mozer, O V Agapitov and J W Bonnell Phys. Plasmas 25 022905 (2018)

    Article  ADS  Google Scholar 

  11. G S Lakhina, S V Singh, A P Kakad and J S Pickett J. Geophys. Res. 116 A10218 (2011)

    Article  ADS  Google Scholar 

  12. C A Cattell, J Dombeck, J R Wygant, M K Hudson, F S Mozer, M A Temerin, W K Peterson, C A Kletzing, C T Russell and R F Pfaff Geophys Res. Lett. 26 425 (1999)

    Article  ADS  Google Scholar 

  13. R Pottelette, R E Ergun, R A Treumann, M Berthomier, C W Carlson, J P McFadden and I Roth Geophys Res. Lett. 26 2629 (1999)

    Article  ADS  Google Scholar 

  14. M Berthomier, R Pottelette, M Malingre and Y Khotyaintsev Phys. Plasmas 7 2987 (2000)

    Article  ADS  Google Scholar 

  15. S Ullah, W Masood and M Siddiq Eur Phys. J. D 74 26 (2020)

    Article  ADS  Google Scholar 

  16. R L Mace and M A Hellberg Phys. Plasmas 8 2649 (2001)

    Article  ADS  Google Scholar 

  17. A Saha and P Chatterjee Astrophys. Space Sci. 353 169 (2014)

    Article  ADS  Google Scholar 

  18. A Saha, N Pal and P Chatterjee Phys. Plasmas 21 102101 (2014)

    Article  ADS  Google Scholar 

  19. V Pierrard and M Lazar Sol. Phys. 267 153 (2010)

    Article  ADS  Google Scholar 

  20. I Kourakis, S Sultana and M A Hellberg Plasma Phys. Controlled Fusion 54 124001 (2012)

    Article  ADS  Google Scholar 

  21. R L Mace and R D Sydora J. Geophys. Res. 115 A07206 (2010)

    ADS  Google Scholar 

  22. R A Cairns, A A Mamun, R Bingham, R Boström, R O Dendy, R O Nairn and P K Shukla Geophys Res. Lett. 22 2709 (1995)

    Article  ADS  Google Scholar 

  23. W Masood, S J Schwartz, M Maksimovic and A N Fazakerley Ann Geophys. 24 1725 (2006)

    Article  ADS  Google Scholar 

  24. W Masood and S J Schwartz J. Geophys. Res. 113 A012161 (2008)

    Article  Google Scholar 

  25. M N S Qureshi, H A Shah, G Murtaza, S J Schwartz and F Mahmood Phys Plasmas. 11 3819 (2004)

    Article  ADS  Google Scholar 

  26. S Ullah, W Masood, M Siddiq and H Rizvi Phys Scr. 94 125604 (2019)

    Article  ADS  Google Scholar 

  27. S Ullah, W Masood and M Siddiq Contrib. Plasma Phys. 60 13 (2020)

    Google Scholar 

  28. R Hirota The direct method in soliton theory (Cambridge: Cambridge University Press) (2004)

    Book  Google Scholar 

  29. S V Singh and G S Lakhina Nonlinear Processes Geophys. 11 275 (2004)

    Article  ADS  Google Scholar 

  30. F Verheest and M A Hellberg Phys. Plasmas 22 072303 (2015)

    Article  ADS  Google Scholar 

  31. F Verheest and W A Hereman J. Plasma Phys. 85 905850106 (2019)

    Article  Google Scholar 

  32. R Jahangir and W Masood Phys. Plasmas 27 042105 (2020)

    Article  ADS  Google Scholar 

  33. M Shohaib, W Masood, R Jahangir, M Siddiq, S A Alkhateeb and S A El-Tantawy J. Ocean Eng. Sci. 7 555 (2021)

    Article  Google Scholar 

  34. M Shohaib, W Masood, R Jahangir, M Siddiq and H Rizvi Contrib. Plasma Phys. 62 e202100134 (2020)

    Article  Google Scholar 

  35. M Shohaib, W Masood, H A AlyousefHaifa, M Siddiq and S A El-Tantawy Phys Fluids 34 093107 (2022)

    Article  ADS  Google Scholar 

  36. J S Pickett, L J Chen, S W Kahler, O Santolik, D A Gurnett, B T Tsurutani and A Balog Ann Geophys. 22 2515 (2004)

    Article  ADS  Google Scholar 

  37. L A Ostrovsky and Y A Stepanyants CHAOS 15 037111 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. P Harvey, C Durniak, D Samsonov and G Morfill Phys. Rev. E 81 057401 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to the paper.

Corresponding author

Correspondence to Shakir Ullah.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Shohaib, M. & Ullah, S. Nonlinear electron-acoustic waves in non-Maxwellian plasma: application in terrestrial magnetosphere. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03226-z

Keywords

Navigation