Skip to main content
Log in

Optimizing 2D MoS2 for removal of anionic heavy metals from water: insights from density functional theory study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Two dimensional Molybdenum disulfide (2D MoS2) has been identified as a potential candidate for the adsorption of heavy metal (HM) ions. However, approaches that consider doping of the material as a means of enhancing the adsorption capabilities of HM ions are still lacking yet such knowledge is important for the optimisation of 2D MoS2 for the proposed applications. In this study, we used density functional theory and molecular dynamics simulation approaches to investigate the adsorption dynamics of HM ions (Hg+2, Pb+2, Cd+2, Zn+2, Cu+2, Ni+2, and Cr+3) in contaminated water on the surface of 2D MoS2 to unravel how such interactions can be improved with the introduction of S substitutional dopant using O, Cl, P, and Se as potential dopants. From the analysis of adsorption energies, the interactions between the HMs and doped MoS2 surfaces are all negative, implying that they are attractive and spontaneous. The interactions between the P- and Cl-doped 2D MoS2 surfaces and HM ions were more favourable than those between the Se- and O-doped systems. The results showed that Cl-doped 2D MoS2 was more effective for the removal of Hg+2, Cd+2, and Zn+2 HM ions because of their moderate adsorption energies. Furthermore, the analysis of projected density of states showed that the removal of Hg+2, Cd+2, and Zn+2 in water can be attributed to the hybridization of the d- and p-state electrons of the HMs and Cl-doped 2D MoS2 material. Upon thermal treatment, Hg, Cd, and Zn HMs were completely removed from the surface of Cl-doped 2D MoS2 at 322, 371, and 316 K, respectively, rendering the material reusable. This study explores the adsorption dynamics of HMs ions onto doped 2D MoS2 and provides some insights that may guide the realization of 2D MoS2 as a mainstream adsorbents in the removal of HMs in contaminated water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J Cook et al. Res. Lett. 8 024024 (2003)

    Article  Google Scholar 

  2. P Echeveste, J Dachs, N Berrojalbiz and S Agustí Chemosphere 81 161 (2010)

    Article  ADS  Google Scholar 

  3. L Mercier and T J Pinnavaia Environ. Sci. Technol. 32 2749 (1998)

    Article  ADS  Google Scholar 

  4. L Nizzetto et al. Sci. Technol. 44 6526 (2010)

    Article  Google Scholar 

  5. H Chu, Y Liu and N Xu Chem. Lett. 21 1203 (2023)

    Article  Google Scholar 

  6. V Dummee, M Kruatrachue, W Trinachartvanit, P Tanhan and P Pokethitiyook Environ. Saf. 86 204 (2012)

    Article  Google Scholar 

  7. G Mazumder Indian J Med Res. 128 436 (2008)

    Google Scholar 

  8. G Mansourri and M Madani J. Ecol. 6 55 (2016)

    Google Scholar 

  9. P W Wasike and M P Nawiri Ecol. Res. 7 135 (2019)

    Google Scholar 

  10. K Rozana, Sukirno, D S Prabasiwi and S Murniasih J. Phys. Conf. Ser. 1436 012084 (2020)

    Article  Google Scholar 

  11. M L Abbott, K N Keck, R E Schindler, R L VanHorn, N L Hampton, and M B Heiser Screening Level Risk Assessment for the New Waste Calcining Facility (United States) (1999)

  12. WHO Guidelines for drinking-water quality: first addendum to the fourth edition (Geneva: World Health Organization) (2017)

  13. J Wang and C Chen Biotechnol. Adv. 24 427 (2006)

    Article  Google Scholar 

  14. L Xu and J Wang Crit. Rev. Environ. Sci. Technol. 47 1042 (2017)

    Article  Google Scholar 

  15. J Wang and X Guo Crit. Rev. Environ. Sci. Technol. 53 1837 (2023)

    Article  ADS  Google Scholar 

  16. J Wang and C Chen Biotechnol. Adv. 27 195 (2009)

    Article  Google Scholar 

  17. J Wang and C Chen Bioresour. Technol. 160 129 (2014)

    Article  Google Scholar 

  18. A Karim A Karam, and S Khalloufi Molecules 28 4205 (2023)

    Google Scholar 

  19. T W Hao, P Y Xiang, H R Mackey, K Chi, H Lu, H K Chui, M C M van Loosdrecht and G H Chen Water Res. 65 1 (2014)

    Article  Google Scholar 

  20. A Heidari and H Younesi Eng. J. 153 70 (2009)

    Google Scholar 

  21. K Wang, H Zhang, S Chen, G Yang, J Zhang, W Tian and Z Su Mater. 26 6168 (2014)

    Google Scholar 

  22. G M Whitesides, Z Nie, C A Nijhuis, J Gong, X Chen, A Kumachev and A W Martinez Chip. 10 477 (2010)

    Article  Google Scholar 

  23. S H Choi, S J Yun, Y S Won, C S Oh, S M Kim and K K Kim Commun. 13 1484 (2022)

    Google Scholar 

  24. K T Philemon and K K Korir J. Phys.: Condens. Matter. 32 245901 (2020)

    ADS  Google Scholar 

  25. K K Korir and K T Philemon Materialia 11 100694 (2020)

    Article  Google Scholar 

  26. K T Philemon, K K Korir, R J Musembi and F W Nyongesa Materialia 29 101785 (2023)

    Article  Google Scholar 

  27. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, K S V Dubonos, I V Grigorieva and A A Firsov Science 306 666 (2004)

    Article  ADS  Google Scholar 

  28. G Kucinskis and G Bajars J. Power Sources. 240 66 (2013)

    Article  Google Scholar 

  29. A I A Sherlala, A A A Raman, M M Bello and A Asghar Chemosphere 193 1004 (2018)

    Article  ADS  Google Scholar 

  30. A Ishag and Y Sun Ind. Eng. Chem. Res. 60 8007 (2021)

    Article  Google Scholar 

  31. M A Renu and M Agarwal J. Water Reuse Desalin. 7 387 (2017)

    Article  Google Scholar 

  32. Z Wang, Q Tu, S Zheng, J J Urban, S Li and B Mi Nano Lett. 17 7289 (2017)

    Article  ADS  Google Scholar 

  33. M Khnifira et al. Chem. Phys. Impact 5 100121 (2022)

    Article  Google Scholar 

  34. C N Yeh, K Raidongia, J Shao and Q H Yang Chem. 7 166 (2015)

    Google Scholar 

  35. Z Zhang, Q Zhao, M Huang, X Zhang and X Ouyang Nanoscale Advances 1 114 (2019)

    Article  ADS  Google Scholar 

  36. B Feng, C Yao, S Chen, R Luo and S Liu Eng. J. 350 692 (2018)

    Google Scholar 

  37. Y Xu, Z Zhou, N Deng, K Fu, C Zhu, Q Hong, Y Shen and S Liu China Chem. 66 1318 (2023)

    Article  Google Scholar 

  38. Y Wang, B Wang, R Huang, B Gao, F Kong and Q Zhang Phys. E. 63 276 (2014)

    Article  Google Scholar 

  39. J Jang, S-S Chee, Y Kang and S Kim ChemEngineering 5 41 (2021)

    Article  Google Scholar 

  40. Z Wang, A Sim and J J Urban Sci. Technol. 52 9741 (2018)

    Article  Google Scholar 

  41. K T Philemon, K K Kiprono, M J Robinson, and J K Cherutoi Structural and electronic properties of light atom doped 2D MoS2: Quantum mechanical study. (CRC Press) p 157 (2022)

  42. W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)

    Article  ADS  Google Scholar 

  43. P Giannozzi et al. J. Phys. Condens. Matter. 21 395502 (2009)

    Article  Google Scholar 

  44. J P Perdew and K Burke Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  45. J Heyd and G E Scuseria J. Chem. Phys. 118 8207 (2003)

    Article  ADS  Google Scholar 

  46. A V Krukau and A F Izmaylov J. Chem. Phys. 125 224106 (2006)

    Article  ADS  Google Scholar 

  47. D Vanderbilt Phys. Rev. B. 41 7892 (1990)

    Article  ADS  Google Scholar 

  48. H J Monkhorst and J D Pack Phys. Rev. B. 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  49. S Grimme, J Antony and S Ehrlich J. Chem. Phys. 132 154104 (2010)

    Article  ADS  Google Scholar 

  50. L Bengtsson Phys. Rev. B. 59 12301 (1999)

    Article  ADS  Google Scholar 

  51. C Hardacre, J D Holbrey and M Nieuwenhuyzen Chem. Res. 40 1146 (2007)

    Article  Google Scholar 

  52. C Schmidt, A Watenphul, S Jahn, I Schäpan, L Scholten and M G Newville Geol. 494 69 (2018)

    Google Scholar 

  53. K B Wiberg and P R Rablen J. Comput. Chem. 14 1504 (1993)

    Article  Google Scholar 

  54. W G Hoover Phys. Rev. A. 31 1695 (1985)

    Article  ADS  Google Scholar 

  55. Q L Tang and Z X Chen Surf. Sci. 601 954 (2007)

    Article  ADS  Google Scholar 

  56. C Zhang, A Johnson, C L Hsu, L J Li and C K Shih Nano Lett. 14 2443 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CHPC –Cape Town (Project Number: MATS0868) for providing High-Performance Computing and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kibet Too Philemon.

Ethics declarations

Conflict of interest

The authors declare that there were no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philemon, K.T., Korir, K.K., Musembi, R.J. et al. Optimizing 2D MoS2 for removal of anionic heavy metals from water: insights from density functional theory study. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03220-5

Keywords

Navigation