Skip to main content
Log in

Shannon entropy measurements for quantum oscillator system in the presence of a spiral dislocation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this research study, we focus on the intriguing impact of topological defects generated by a spiral dislocation on a quantum harmonic oscillator system. This model holds significance in the realm of quantum systems, wherein quantum particles interact within a harmonic oscillator potential. Our investigation revolves around solving the wave equation of harmonic oscillator in the presence of topological defects, culminating in the derivation of analytical eigenvalue solutions. Finally, we explore the entropy information associated with this quantum harmonic oscillator system and conduct a thorough analysis of how topological defects influence its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No data were generated or analyzed in the study.

References

  1. T W B Kibble Austral. J. Phys. 50 697 (1997)

    Article  ADS  Google Scholar 

  2. A Vilenkin and E P S Shellard Cosmic Strings and Other Topological Defects (Cambridge: Cambridge University Press) (1994)

    Google Scholar 

  3. N D Mermin Rev. Mod. Phys. 51 591 (1979)

    Article  ADS  Google Scholar 

  4. L Michel Rev. Mod. Phys. 52 617 (1980)

    Article  ADS  Google Scholar 

  5. R A Puntigam and H H Soleng Class. Quantum Gravit. 14 1129 (1997)

    Article  ADS  Google Scholar 

  6. K C Valanis and V P Panoskaltsis Acta Mech. 175 77 (2005)

    Article  Google Scholar 

  7. C Furtado, V B Bezerra and F Moraes Phys. Lett. A 289 160 (2001)

    Article  ADS  Google Scholar 

  8. A L S Netto, C Chesman and C Furtado Phys. Lett. A 372 3894 (2008)

    Article  ADS  Google Scholar 

  9. L Dantas, C Furtado and A L Silva Netto Phys. Lett. A 379 11 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. N Soheibi, M Hamzavi, M Eshghi and S M Ikhdair Eur. Phys. J. B 90 212 (2017)

    Article  ADS  Google Scholar 

  11. C Filgueiras and E O Silva Phys. Lett. A 379 2110 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. G A Marques, C Furtado, V B Bezerra and F Moraes J. Phys. A Math. Gen. 34 5945 (2001)

    Article  ADS  Google Scholar 

  13. C Furtado and F Moraes EPL 45 279 (1999)

    Article  ADS  Google Scholar 

  14. A L S Netto and C Furtado J. Phys. Condens. Matter 20 125209 (2008)

    Article  ADS  Google Scholar 

  15. C Filgueiras, M Rojas, G Aciole and E O Silva Phys. Lett. A 380 3847 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. S Zare, H Hassanabadi and G Junker Eur. Phys. J. Plus 138 354 (2023)

    Article  Google Scholar 

  17. S Zare, H Hassanabadi, G J Rampho and A N Ikot Eur. Phys. J. Plus 135 748 (2020)

    Article  Google Scholar 

  18. S Zare, H Hassanabadi and M de Montigny Eur. Phys. J. Plus 135 122 (2020)

    Article  Google Scholar 

  19. S Zare, H Hassanabadi and G Junker Int. J. Mod. Phys. A 36 2150215 (2021)

    Article  ADS  Google Scholar 

  20. H Hassanabadi, S Zare, J KŘíž and B C Lütfüoğlu EPL 132 60005 (2020)

    Article  ADS  Google Scholar 

  21. S Zare, H Hassanabadi and G Junker Gen Relativ Gravit 54 69 (2022)

    Article  ADS  Google Scholar 

  22. B C Lütfüoğlu, J KŘíž, S Zare and H Hassanabadi Phys. Scr. 96 015005 (2021)

    Article  ADS  Google Scholar 

  23. S Zare, H Hassanabadi and M de Montigny Int. J Mod. Phys. A 35 2050071 (2020)

    Article  ADS  Google Scholar 

  24. H Chen, S Zare, H Hassanabadi and Z-W Long Indian J Phys 96 4219 (2022)

    Article  ADS  Google Scholar 

  25. S Hassanabadi, S Zare, B C Lütfüoglu, J Kříž and H Hassanabadi Int. J. Mod. Phys. A 36 2150100 (2021)

    Article  ADS  Google Scholar 

  26. K Bakke and C Furtado Phys. Rev. A 87 012130 (2013)

    Article  ADS  Google Scholar 

  27. A V D M Maia and K Bakke Phys. B: Condens. Matter 531 213 (2018)

    Article  ADS  Google Scholar 

  28. A V D M Maia and K Bakke Quant. Stud. Math. Found. 10 79 (2023)

    Article  Google Scholar 

  29. P Sedaghatnia, H Hassanabadi and G J Rampho Int. J Mod. Phys. A 35 2050108 (2020)

    Article  ADS  Google Scholar 

  30. S Zare and H Hassanabadi Int. J Mod Phys. A 35 2050195 (2020)

    Article  ADS  Google Scholar 

  31. A Guvendi, S Zare and H Hassanabadi Eur. Phys. J. A 57 192 (2021)

    Article  ADS  Google Scholar 

  32. S Zare, H Hassanabadi, A Guvendi and W S Chung Int. J Mod. Phys. A 37 2250033 (2022)

    Article  ADS  Google Scholar 

  33. S Zare, H Hassanabadi and A Guvendi Eur. Phys. J. Plus 137 589 (2022)

    Article  Google Scholar 

  34. M O Katanaev and I V Volovich Ann. Phys. (NY) 216 1 (1992)

    Article  ADS  Google Scholar 

  35. C Furtado and F Moraes J. Phys. A: Math. Gen. 33 5513 (2000)

    Article  ADS  Google Scholar 

  36. R L L Vitoria and H Belich Phys. Scr. 94 125301 (2019)

    Article  ADS  Google Scholar 

  37. F Ahmed Proc. R. Soc A 479 20220624 (2023)

    Article  ADS  Google Scholar 

  38. F Ahmed EPL 141 54001 (2023)

    Article  ADS  Google Scholar 

  39. W C F da Silva, K Bakke and R L L Vitória Eur. Phys. J. C 79 657 (2019)

    Article  ADS  Google Scholar 

  40. V B Bezerra J. Math. Phys. 38 2553 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  41. C Furtado, C A de Lima Ribeiro and S Azevedo Phys. Lett. A 296 171 (2002)

    Article  ADS  Google Scholar 

  42. A V D M Maia and K Bakke Universe 8 168 (2022)

    Article  ADS  Google Scholar 

  43. M Peshkin and A Tonomura The Aharonov-Bohm Effect. Lecture Notes in Physics, vol 340 (Berlin, Germany: Springer) (1989)

  44. G B Arfken and H J Weber Mathematical Methods for Physicists (New York: Elsevier Academic Press) (2005)

    Google Scholar 

  45. L D Landau and E M Lifshitz Quantum Mechanics: The Nonrelativistic Theory (Oxford, UK: Pergamon) (1977)

    Google Scholar 

  46. K S Gupta and S G Rajeev Phys. Rev. D 48 5940 (1993)

    Article  ADS  Google Scholar 

  47. H E Camblong, L N Epele, H Fanchiotti and C A Garcia Canal Phys. Rev. Lett. 85 1590 (2000)

    Article  ADS  Google Scholar 

  48. S A Coon and B R Holstein Amer. J. Phys. 70 513 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. A V D M Maia and K Bakke Commun. Theor. Phys. 73 025103 (2021)

    Article  ADS  Google Scholar 

  50. R F Nalewajski Int. J. Quant. Chem. 108 2230 (2008)

    Article  ADS  Google Scholar 

  51. H Nagaoka, Asymptotic Theory Of Quantum Statistical Inference: Selected Papers, M Hayashi (Ed.), pp. 113-149 (2005)

  52. B Wang, D Zhao, T Lu, S Liu and C Rong J. Phys. Chem. A 125 3802 (2021)

    Article  Google Scholar 

  53. Y J Lian and J M Liu Comm. Theor. Phys. 73 085102 (2021)

    Article  ADS  Google Scholar 

  54. B J Falaye and M S Liman Laser Phys. 30 225206 (2020)

    Article  Google Scholar 

  55. S Dong, G-H Sun, S-H Dong and J P Draayer Phys. Lett. A 378 124 (2014)

    Article  ADS  Google Scholar 

  56. G-H Sun, M A Aoki and S-H Dong Chin. Phys. B 22 050302 (2013)

    Article  Google Scholar 

  57. X-D Song, G-H Sun and S-H Dong Phys. Lett. A 379 1402 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  58. G Yañez-Navarro, G-H Sun, T Dytrych, K D Launey, S-H Dong and J P Draayer Ann. Phys. 348 153 (2014)

    Article  ADS  Google Scholar 

  59. F C E Lima, A R P Moreira and C A S Almeida Int. J. Quant. Chem. 121 e26645 (2021)

    Article  Google Scholar 

  60. F C E Lima, A R P Moreira and C A S Almeida Int. J. Quant. Chem. 121 e26749 (2021)

    Article  Google Scholar 

  61. A R P Moreira J. Comput. Electron. 21 21 (2022)

    Article  Google Scholar 

  62. R S Carrillo, J S G Flores, E M Espinal, L F Quezada, G H Sun and S H Dong Entropy 24 1516 (2022)

    Article  ADS  Google Scholar 

  63. C A Gil-Barrera, R Santana Carrillo, G H Sun and S H Dong Entropy 24 604 (2022)

    Article  ADS  Google Scholar 

  64. M E Udoh, P O Amadi, U S Okorie, A D Antia, L F Obagboye, R Horchani, N Sulaiman and A N Ikot Pramana 96 222 (2022)

    Article  ADS  Google Scholar 

  65. I López-García, A J Macías, S López-Rosa and J C Angulo Phys. Rev. A 108 022812 (2023)

    Article  ADS  Google Scholar 

  66. S Mondal, A Sadhukhan, K Sen and J K Saha J. Phys. B 56 155001 (2023)

    Article  ADS  Google Scholar 

  67. H Shafeekali and O Olendski Phys. Scr. 98 085107 (2023)

    Article  ADS  Google Scholar 

  68. D Nath and A K Roy Eur. Phys. J. Plus 138 395 (2023)

    Article  Google Scholar 

  69. A R P Moreira Physica E: Low-dimensional Systems and Nanostructures 152 115747 (2023)

    Article  Google Scholar 

  70. F C E Lima, A R P Moreira, C A S Almeida, C O Edet and N Ali Phys. Scripta 98 065111 (2023)

    Article  ADS  Google Scholar 

  71. C E Shannon The Bell System Technical Journal 27 379 (1948)

    Article  MathSciNet  Google Scholar 

  72. F Grasselli Elements of Quantum Information Theory. In: Quantum Cryptography, Springer, Cham., (2021)

  73. W Beckner Ann. Math. 102 159 (1975)

    Article  MathSciNet  Google Scholar 

  74. I Bialynicki-Birula and J Mycielski Commun. Math. Phys. 44 129 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.A. acknowledged the Inter University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for granted visiting associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. P. Moreira.

Ethics declarations

Conflict of interest

Authors declare(s) no such Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A.R.P., Ahmed, F. Shannon entropy measurements for quantum oscillator system in the presence of a spiral dislocation. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03219-y

Keywords

Navigation