Skip to main content
Log in

Pt-substituted rutile SnO2 (110) surface: first-principles study on its adsorption of formaldehyde

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work presents an extensive study for analyzing the adsorption mechanism of formaldehyde on pure and Pt-substituted rutile SnO2 (110) surfaces via the Density Functional Theory (DFT) method. Out of the two suitable surface sites for Pt-substitution, namely, Sn5c and Sn6c, the latter was found to be more suitable. Three formaldehyde configurations were considered, monodentate η1(O)-straight, monodentate η1(O)-tilted, and bidentate η2(O, C)-tilted. It was found that after Pt-substitution, the adsorption energies for η1(O)-tilted and η2(O, C)-tilted formaldehyde geometries were slightly improved. This improvement was found to be due to electron injection by Pt into the band gap of the surface combined with the stability of the formaldehyde orientation. Also, the overall adsorption energy values were better for the tilted configurations rather than those for the straight geometry. The changes in surface structure and bond lengths after optimization are seen to aid the adsorption mechanism by inducing steric effects and improved electrostatic interactions. Bader charge analysis shows two-fold interactions of charge transfer as well as only one-fold interaction in the cases of tilted and straight geometries respectively. Charge density difference (CDD) plots visually verified the above-stated results. The total density of states showed the injection of additional electronic states near zero energy (Fermi energy) level after Pt-substitution and an additional peak upon introduction of the gas molecule. PDOS plots were obtained to analyze the contribution of the orbitals of surface sites and the gas molecules to the gas adsorption mechanism. The recovery times for all the systems were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and code availability

The entire data and code is available with the author and shall be produced if required.

References

  1. H Liu, X Wang, C Pan and K M Liew J. Phys. Chem. C. 116 8044 (2012)

    Article  Google Scholar 

  2. A Ahmadi, N L Hadipour, M Kamfiroozi and Z Bagheri Sens. Actuators B. 161 1025 (2012)

    Article  Google Scholar 

  3. A Allouch, M Guglielmino, P Bernhardt, C A Serra and S Le Calvé Sens. Actuators B. 181 551 (2013)

    Article  Google Scholar 

  4. J H E Arts, M A J Rennen and C de Heer Regul. Toxicol. Pharmacol. 44 144 (2006)

    Article  Google Scholar 

  5. C Dong, Q Li, G Chen, X Xiao and Y Wang Sens. Actuators B. 220 171 (2015)

    Article  Google Scholar 

  6. H Checkoway, P Boffetta, D J Mundt and K A Mundt Cancer Causes Control. 23 1747 (2012)

    Article  Google Scholar 

  7. L R Rhomberg Regul. Toxicol. Pharmacol. 73 829 (2015)

    Article  Google Scholar 

  8. M A Basyooni, S E Zaki, M Tihtih, I Boukhoubza, R En-nadir and G F Attia Handbook of nanosensors (Berlin: Springer) (2024)

    Google Scholar 

  9. M A Basyooni, M Kabatas, R En-nadir, K Rahmani and Y R Eker Micromachines. 14 1860 (2023)

    Article  Google Scholar 

  10. D Xue, P Wang, Z Zhang and Y Wang Sens. Actuators B Chem. 296 126710 (2019)

    Article  Google Scholar 

  11. N Yamazoe Sens. Actuators B Chem. 108 2 (2005)

    Article  Google Scholar 

  12. J A Dirksen, K Duval and T A Ring Sens. Actuators B Chem. 80 106 (2001)

    Article  Google Scholar 

  13. S Li, Z Lu, Z Yang and X Chu Sens. Actuators B Chem. 202 83 (2014)

    Article  Google Scholar 

  14. M Tang, Z Zhang and Q Ge Catal. Today 274 103 (2016)

    Article  Google Scholar 

  15. Y Sun, S Sun, Y Zhang, Z Zhang, T Hou, H Du and J Wang Appl. Surf. Sci. 570 15110 (2021)

    Google Scholar 

  16. A Umar, H Y Ammar, R Kumar, T Almas, A A Ibrahim, M S AlAssiri, M Abaker and S Baskoutas Int. J. Hydrog. Energy. 45 26388 (2020)

    Article  Google Scholar 

  17. M A Abdulsattar, H H Abed, R H Jabbar and N M Almaroof J. Mol. Graph. Model. 102 107791 (2021)

    Article  Google Scholar 

  18. F Jollet, M Torrent and N Holzwarth Comput. Phys. Commun. 185 1246 (2014)

    Article  ADS  Google Scholar 

  19. T Daio, A Staykov, L Guo, J Liu, M Tanaka, S M Lyth and K Sasaki Sci. Rep. 5 13126 (2015)

    Article  ADS  Google Scholar 

  20. T T Rantala, T S Rantala and V Lantto Mater. Sci. Semicond. 3 103 (2000)

    Article  Google Scholar 

  21. A V Bandura, J O Sofo and J D Kubicki J. Phys. Chem. B. 110 8386 (2006)

    Article  Google Scholar 

  22. F Wang, J Fan, Q Sun, Q Jiang, S Chen and W Zhou J. Nanomater. 2016 1 (2016)

    ADS  Google Scholar 

  23. S Nasresfahani, M H Sheikhi, M Tohidi and A Zarifkar Mater. Res. Bull. 89 161 (2017)

    Article  Google Scholar 

  24. Y Xiao, Q Yang, Z Wang, R Zhang, Y Gao, P Sun, Y Sun and G Lu Sens. Actuators B Chem. 227 419 (2016)

    Article  Google Scholar 

  25. P G Choi, N Izu, N Shirahata and Y Masuda Sens. Actuators B Chem. 296 126655 (2019)

    Article  Google Scholar 

  26. F R Sensato, R Custodio, M Calatayud, A Beltran, J Andres, J R Sambrano and E Longo Surf. Sci. 511 408 (2002)

    Article  ADS  Google Scholar 

  27. A V Bandura, J O Sofo and J D Kubicki J. Phys. Chem. B. 112 11616 (2008)

    Article  Google Scholar 

  28. W Wei, Y Dai and B Huang J. Phys. Chem. C 115 18597 (2011)

    Article  Google Scholar 

  29. L Liu and J Zhao Surf. Sci. 652 156 (2016)

    Article  ADS  Google Scholar 

  30. J Haubrich, E Kaxiras and C M Friend Chem. Eur. J. 17 4496 (2011)

    Article  Google Scholar 

  31. R Otero, A L Vasquez de Parga and J M Gallego Surf. Sci. Rep. 7 105 (2017)

    Article  ADS  Google Scholar 

  32. G Henkelman, A Arnaldsson and H Jónson Comput. Mater. Sci. 36 354 (2006)

    Article  Google Scholar 

  33. G Wang, Z Zhao, P Zhai, X Chen and Y Li Coatings. 11 1098 (2021)

    Article  Google Scholar 

  34. J M R Muir and H Idriss Chem. Phys. Lett. 572 125 (2013)

    Article  ADS  Google Scholar 

  35. S Peng, K Cho, P Qi and H Dai Chem. Phys. Lett. 387 271 (2004)

    Article  ADS  Google Scholar 

  36. K Timsorn and C Wongchoosuk Mater. Res. Express 7 055005 (2020)

    Article  ADS  Google Scholar 

  37. G Lee, G Yang, A Cho, J W Han and J Kim Chem. Chem. Phys. 18 14198 (2016)

    Article  Google Scholar 

  38. Y Fang, D D Yang, C Y Xiang, M Shi, H Zhao and H Asadi J. Mol. Graph. 99 107630 (2020)

    Article  Google Scholar 

Download references

Funding

The author would like to thank DST-INSPIRE for providing the necessary funding in research as well as NIT Meghalaya for providing the requisite computational resources.

Author information

Authors and Affiliations

Authors

Contributions

SG performed the simulations and prepared the manuscript. AB supervised the work and revised the manuscript.

Corresponding author

Correspondence to Ayon Bhattacharjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulshanah, S., Bhattacharjee, A. Pt-substituted rutile SnO2 (110) surface: first-principles study on its adsorption of formaldehyde. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03176-6

Keywords

Navigation