Skip to main content
Log in

Flattened and broadband mid-infrared supercontinuum generation in As2S3 photonic crystal fibers with a square air-hole lattice

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper analyzes smooth and broadband supercontinuum (SC) generation in the mid-infrared range using square-lattice As2S3-based photonic crystal fiber (PCF). Simulation of short pulse transmission in optimal PCFs is performed by solving the generalized nonlinear Schrödinger equation with different parameters of pump sources. The first fiber has an anomalous dispersion curve that is flattest and closest to the zero dispersion of all reported fibers. It can generate a broad SC bandwidth covering a 2–11.5 μm range after injecting a pump pulse of 700 pJ energy of (5.83 kW peak power), 120 fs of duration, and 6.5 µm wavelength into 10 cm of fiber length. For the input energy of 810 pJ (9 kW peak power) and pump wavelength of 5 μm, SC spanning 1.9–8.6 μm wavelength region is observed in the second PCF with all-normal dispersion. The achieved SC could find many potential applications in material structure detection, biomedicine, environment monitoring, and food quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. C S Brès, A D Torre, D Grassani and V Brasch C Grillet and C Monat Nanophotonics 12 1199 (2023)

    Article  Google Scholar 

  2. G P Agrawal Nonlinear fiber optics (Berlin, Heidelberg, Springer, 2000)

  3. A Ghanbari and A Kashaninia A Sadr and H Saghaei Optik 140 545 (2017)

    Google Scholar 

  4. J Swiderski Prog. Quant. Electron. 38 189 (2014)

    Article  ADS  Google Scholar 

  5. K Xia, L Yang, B Yan, J Liu, X Li, R Zhao and P Yang Laser Tech. 127 106204 (2020)

    Article  Google Scholar 

  6. T Wang, F Pang, S Huang and J Wen Infor. Tech. Electron. Engineering 20 481 (2019)

    Article  Google Scholar 

  7. B Kuiri, B Dutta, N Sarkar, S Santra, P Mandal, K Mallick and A S Patra Result in Phys. 36 105465 (2022)

    Article  Google Scholar 

  8. M J B M Leon and A S Disha Sens. Inter. 2 100115 (2021)

    Article  Google Scholar 

  9. H T Duc, L T B Tran and V D Long Development J. 25 2581 (2022)

    Google Scholar 

  10. H Yang and J Ni Optik 125 4367 (2014)

    Article  ADS  Google Scholar 

  11. X Alishacelestin, A S Raja and S Selvendran Laser Phys. 31 065101 (2021)

    Article  ADS  Google Scholar 

  12. Y Ma, R Wan, S Li, L Yang and P Wang Materials (Basel) 15 1558 (2022)

    Article  ADS  Google Scholar 

  13. C V Lanh and L T B Tran Laser Phys. 33 095102 (2023)

    Article  ADS  Google Scholar 

  14. M R Karim et al IEEE Photon. Tech. Lett. 29 1972 (2017)

    Article  Google Scholar 

  15. C V Lanh, L T B Tran, D V Trong, V T M Ngoc, N T Thuy and N T H Phuong Fiber Tech. 75 103151 (2023)

    Article  Google Scholar 

  16. W Yuan Laser Phys. Lett. 10 095107 (2013)

    Article  ADS  Google Scholar 

  17. K Xiao, Y Ye and R Min Front. Phys. 10 933010 (2022)

    Article  Google Scholar 

  18. C V Lanh, D X Khoa, L C Trung, T D Thanh and N T Thuy Materials 137 113547 (2023)

    Google Scholar 

  19. S Sen, Md Abdullah-Al-Shafi and M A Kabir Sens. Bio-Sens. Research 30 100377 (2020)

    Article  Google Scholar 

  20. H T Duc, N A Tu and N T Thuy VNU J. Science Mathematics—Phys. 39 42 (2023)

    Article  Google Scholar 

  21. G K M Hasanuzzaman, T M Sakib and A K Paul Sens. Bio-Sens. Research 42 100582 (2023)

    Article  Google Scholar 

  22. A Patel, D Singh, Y Sonvane, P B Thakor and R Ahuja Computational Materials Science 183 109913 (2020)

    Article  Google Scholar 

  23. N T Thuy, H T Duc and C V Lanh Opt. Quant. Electron. 56 367 (2024)

    Article  Google Scholar 

  24. A K M S J Choyon and R Chowdhury Optik 258 168857 (2022)

    Article  ADS  Google Scholar 

  25. L R Murphy, S Yerolatsitis, T A Birks and J M Stone Optics Express 30 37303 (2022)

    Article  ADS  Google Scholar 

  26. X Zhang, M He, M Chang, H Chen, N Chen, N Qi, M Yuan and X Qin Opt. Communications 410 396 (2018)

    Article  ADS  Google Scholar 

  27. M Asobe, T Kanamori, K Naganuma, H Itoh and T Kaino J. Appl. Phys. 77 5518 (1995)

    Article  ADS  Google Scholar 

  28. D V Trong, L T B Tran, H T A Thu, N T Thuy and C V Lanh Vinh Uni. J Science 51 44 (2022)

    Google Scholar 

  29. M B Hossain, A A M Bulbul, M A Mukit and E Podde Opt. Photon. J. 7 235 (2017)

    Article  ADS  Google Scholar 

  30. https://www.lumerical.com/products/mode/

  31. Y B Yang, J Li, Q Q Nie, Z Y Zhou and H Xu Eng. Analysis with Boundary Elements 155 528 (2023)

    Article  MathSciNet  Google Scholar 

  32. I Ayesta, J Zubia, J Arrue, M A Illarramendi and M Azkune Polymers 9 730 (2017)

    Article  Google Scholar 

  33. X Liu, Z Yang, D Wang and H Cao Crystals 6 158 (2016)

    Article  Google Scholar 

  34. S M Salimullah and M Faisa Alexandria Engineering J. 70 289 (2023)

    Article  Google Scholar 

  35. A F Abas, K Y Lau, Y M Al-Moliki, Y T Aladadi, M T Alresheedi and M A Mahdi Appl. Sci. 13 4087 (2023)

    Article  Google Scholar 

  36. C V Lanh, N T Thuy, L T B Tran, H T Duc, V T M Ngoc, L V Hieu and H V Thuy Photonics and Nanostructures—Fundamentals and Appl. 48 100986 (2022)

    Google Scholar 

  37. M M Shior, B C Agbata, G O Acheneje, G D Gbor and S Musa East African Scholars J. Eng. Comput. Sci. 6 1 (2023)

    Google Scholar 

  38. A Medjouria and D Abed Opt. Mat. 9 109391 (2019)

    Article  Google Scholar 

  39. W Geng, C Bao, Y Fang, Y Wang, Y Li, Z Wang, Y G Liu, H Huang, Y Ren, Z Pan and Y Yue IEEE Access 8 168177 (2020)

    Article  Google Scholar 

  40. G E Snopatin, I V Skripachev, V G Plotnichenko and M F Churbanov Dokl. Chem. 511 187 (2023)

    Article  Google Scholar 

  41. L T B Tran, N M Thien, N T Nam, D T Tuyet, T D Tan, M V Luu, N T Vinh and C V Lanh In Proc. the 8th Academic Conf. Natural Sci. Young Scientists, Master and PhD. Students from Asean Countries (CASEAN-8), 463 (2023)

  42. C R Petersen, R D Engelsholm, C Markos, L Brilland, C Caillaud, J Trolès and O Bang Opt. Express 25 15336 (2017)

    Article  ADS  Google Scholar 

  43. A Efimov and A J Taylor Opt. Express 16 5942 (2008)

    Article  ADS  Google Scholar 

  44. Y Gao, X Wang, X Zhu, K Zhao, H Liu, Z Wang, S Fang and Z Wei Phys. Rev. Research 4 013035 (2022)

    Article  ADS  Google Scholar 

  45. D V Trong and C V Lanh Phys. Lett. B 37 2350063 (2023)

    Google Scholar 

  46. M Karpov, H Guo, A Kordts, V Brasch, M H P Pfeiffer, M Zervas, M Geiselmann and T J Kippenberg Phys. Rev. Lett. 116 103902 (2016)

    Article  ADS  Google Scholar 

  47. C Wei, J Hu and C R Menyuk Frontiers in Phys. 4 30 (2016)

    Article  ADS  Google Scholar 

  48. N Si, L Sun, Z Zhao, X Wang, Q Zhu, P Zhang, S Liu, Z Pan, Z Liu, S Dai and Q Nie Appl. Phys. A 124 171 (2018)

    Article  ADS  Google Scholar 

  49. V Dagytė and N Anttu Nanotechnology 30 025710 (2019)

    Article  ADS  Google Scholar 

  50. C Manzoni and G Cerullo J. Opt. 18 103501 (2016)

    Article  ADS  Google Scholar 

  51. S O Leonov, Y Wang, V S Shiryaev, G E Snopatin, B S Stepanov, V G Plotnichenko, E Vicentini, A Gambetta, N Coluccelli, C Svelto, P Laporta and G Galzerano Opt. Lett. 45 1346 (2020)

    Article  ADS  Google Scholar 

  52. Z Eslami, P Ryczkowski, L Salmela and G Genty Opt. Lett. 45 3103 (2020)

    Article  ADS  Google Scholar 

  53. T Cheng, K Nagasaka, T H Tuan, X Xue, M Matsumoto, H Tezuka, T Suzuki and Y Ohishi Opt. Lett. 41 2117 (2016)

    Article  ADS  Google Scholar 

  54. T Cheng, H Kawashima, X Xue, D Deng, M Matsumoto, T Misumi, T Suzuki and Y Ohishi J. Light. Technol. 33 333 (2015)

    Article  ADS  Google Scholar 

  55. T S Saini, T H Tuan, T Suzuki and Y Ohishi Sci. Rep. 10 2236 (2020)

    Article  ADS  Google Scholar 

  56. M Meneghetti, X Forestier, C R Petersen, R Kasztelanic, M Klimczak, O Bang, R Buczyński and J Troles Adv. Photonics Res. 2 2000091 (2021)

    Article  Google Scholar 

  57. A G Alharbi, J Mirza, M Raza and S Ghafoo Computers Mat. Continua 73 5411 (2022)

    Article  Google Scholar 

  58. F W Dagnaw, W Feng and Q H Song Sens. Actuators B: Chemical 318 127937 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. LCV: Conceptualization, Methodology, Writing—original draft, Supervision, Writing—review & editing. BTLT: Writing—original draft, Visualization, Investigation, Data curation.

Corresponding author

Correspondence to Lanh Chu Van.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Tran, B.T., Van, L.C. Flattened and broadband mid-infrared supercontinuum generation in As2S3 photonic crystal fibers with a square air-hole lattice. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03159-7

Keywords

Navigation