Skip to main content
Log in

Axially symmetric relativistic structures and the Riemann curvature tensor

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Despite the existence of structure scalars in different geometries and modified theories, their importance of static and axially symmetric systems for f(T) gravity (where T is responsible for torsional effects) is still questionable. The novel approach to comprehending the role of structure scalars on static axial symmetric systems in the presence of f(T) gravity is performed in this manuscript. An extensive structure for static and axially symmetric geometry is presented. The line element with compatible anisotropic fluid (which serves as the origin for exterior Weyl spacetime) is contemplated. We initiate by exploring f(T) field equations with the support of non-diagonal tetrads for static axial symmetry. The structure scalars are determined in our scenario. We attain eight distinct sorts of scalars, which are trace and trace-free parts. The three distinct scalars \(\mathbb {Y}_{TF_1}\), \(\mathbb {Y}_{TF_2}\) and \(\mathbb {Y}_{TF_3}\) with f(T) corrections are responsible for the complexity of the system; whereas, the inhomogeneity of the system is controlled by the three other scalars \(\mathbb {X}_{TF_1}\), \(\mathbb {X}_{TF_2}\) and \(\mathbb {X}_{TF_3}\) with f(T) corrections. We assemble the hydrostatic equilibrium equations in terms of f(T) gravity and construct two conformal equations with the support of these equations. In the end, we computed a few analytical solutions in the frame of f(T) gravity. One of them is about the dense spheroid comprising isotropic pressure, and the other is about anisotropic fluid content dealing with inhomogeneity. In the first case, our findings indicate that joining with the Weyl exterior geometry is not possible. On the other hand, the solution associated with anisotropic fluids has smooth joining with the Weyl exterior geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors comment: This manuscript contains no associated data.]

References

  1. L Herrera et al Phys. Rev. D 79 064025 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  2. L Herrera, A Di Prisco and J Ibanez Phys. Rev. D 84 107501 (2011).

    Article  ADS  Google Scholar 

  3. L Herrera Phys. Rev. D 97 044010 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. L Herrera, A Di Prisco and J Ospino Phys. Rev. D 98 104059 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  5. J Ospino and L A Núñez Eur. Phys. J. C 80 166 (2020).

    Article  ADS  Google Scholar 

  6. T Clifton et al Phys. Rep. 513 1 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  7. L P Eisenhart Non-Riemannian geometry Courier Corporation (2012)

  8. R Ferraro and M J Guzmán Phys. Rev. D 94 104045 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  9. A Conroy and T Koivisto Eur. Phys. J. C 78 923 (2018).

    Article  ADS  Google Scholar 

  10. H I Arcos and J G Pereira Int. J. Mod. Phys. D 13 2193 (2004).

    Article  ADS  Google Scholar 

  11. G G L Nashed Astrophys. Space Sci. 330 173 (2010).

    Article  ADS  Google Scholar 

  12. Y F Cai et al Rep. Prog. Phys. 79 106901 (2016).

    Article  ADS  Google Scholar 

  13. K Atazadeh and M Mousavi Eur. Phys. J. C 73 2272 (2013).

    Article  ADS  Google Scholar 

  14. A De Benedictis and S Ilijić. arXiv:1609.07465. (2016)

  15. S Bahamonde, K Flathmann and C Pfeifer Phys. Rev. D 100 084064 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  16. M Z Bhatti, Z Yousaf and S Hanif Phys. Dark Universe 16 34 (2017).

    Article  ADS  Google Scholar 

  17. M Z Bhatti, Z Yousaf and S Hanif Mod. Phys. Lett. A 32 1750042 (2017).

    Article  ADS  Google Scholar 

  18. G G L Nashed and E N Saridakis Class. Quantum Grav. 36 135005 (2019).

    Article  ADS  Google Scholar 

  19. H Stephani et al Exact solutions of Einstein’s field equations Cambridge University Press (2009)

  20. K R Nayak Gen. Relativ. Gravit. 41 2737 (2009).

    Article  ADS  Google Scholar 

  21. S Dain Class. Quantum Grav. 29 073001 (2012).

    Article  ADS  Google Scholar 

  22. A Vollmer Phys. Rev. D 92 084036 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. J L Hernandez-Pastora, L Herrera and J Martin Class. Quantum Grav. 33 235005 (2016).

    Article  ADS  Google Scholar 

  24. J Ospino, J L Hernández-Pastora and L A Núñez Eur. Phys. J. C 82 591 (2022).

    Article  ADS  Google Scholar 

  25. G G L Nashed Eur. Phys. J. C 49 851 (2007).

    Article  ADS  Google Scholar 

  26. G G L Nashed Adv. High Energy Phys. 2014 (2014). https://doi.org/10.1155/2014/857936

  27. S Bahamonde et al Phys. Rev. D 103 044058 (2021).

    Article  ADS  Google Scholar 

  28. F Beyer and P G LeFloch J. Comput. Phys. 431 110145 (2021).

    Article  Google Scholar 

  29. Y Cao, M A Ghazizadeh and P G LeFloch Comm. App. Math. Comp. Sci. 17 79 (2022).

    Article  Google Scholar 

  30. R Weinberger and L Hernquist Mon. Notices Royal Astron. Soc. 519 3011 (2023).

    Article  ADS  Google Scholar 

  31. J L Hernández-Pastora and J Martín Gen. Relativ. Gravit. 26 877 (1994).

    Article  ADS  Google Scholar 

  32. R Aldrovandi and J G Pereira Teleparallel gravity: an introduction 173 Springer Science & Business Media (2012)

  33. C G Boehmer, A Mussa and N Tamanini Class. Quantum Grav. 28 245020 (2011).

    Article  ADS  Google Scholar 

  34. N Tamanini and C G Boehmer Phys. Rev. D 86 044009 (2012).

    Article  ADS  Google Scholar 

  35. M Hohmann et al Phys. Rev. D 100 084002 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  36. M Krššák et al Class. Quantum Grav. 36 183001 (2019).

    Article  ADS  Google Scholar 

  37. L Herrera et al Phys. Rev. D 87 024014 (2013).

    Article  ADS  Google Scholar 

  38. M Z Bhatti, Z Yousaf and S Hanif Eur. Phys. J. Plus 137 65 (2021).

    Article  Google Scholar 

  39. G F R Ellis, R Maartens and M A H MacCallum Relativistic Cosmology Cambridge University Press (2012)

  40. Z Yousaf Eur. Phys. J Plus 136 281 (2021).

    Article  Google Scholar 

  41. Z Yousaf Phys. Scr. 97 025301 (2022).

    Article  ADS  Google Scholar 

  42. M Z Bhatti and Z Yousaf Int. J. Mod. Phys. D 26 1750029 (2017).

    Article  ADS  Google Scholar 

  43. J P S Lemos et al Eur. Phys. J. C 75 76 (2015).

    Article  ADS  Google Scholar 

  44. A A Isayev Phys. Rev. D 96 083007 (2017).

    Article  ADS  Google Scholar 

  45. L Herrera and W Barreto Phys. Rev. D 88 084022 (2013).

    Article  ADS  Google Scholar 

  46. J Ovalle et al Eur. Phys. J. C 78 122 (2018).

    Article  ADS  Google Scholar 

  47. Z Yousaf, M Z Bhatti and K Hassan Eur. Phys. J. Plus 135 397 (2020).

    Article  Google Scholar 

  48. M Z Bhatti, Z Yousaf and S Hanif Eur. Phys. J. C 82 714 (2022).

    Article  ADS  Google Scholar 

  49. L Herrera, A Di Prisco and J Ospino Phys. Rev. D 99 044049 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  50. Y Zhao J. Cosmol. Astropart. Phys. 2022 087 (2022).

    Article  Google Scholar 

  51. Z Yousaf et al Chin. J. Phys. 85 375 (2023).

    Article  Google Scholar 

  52. A Krasinski Inhomogeneous cosmological models (Cambridge: Cambridge University Press) (1997)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by Researchers Supporting Project number: RSP2024R413, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The values for \(\mathbb {W}_{a}\) where \(a=1,2,3,...,15\) are stated as below

$$\begin{aligned} \mathbb {W}_{1}&=H(\theta ,\phi )J(\theta ,\phi )(\frac{K'}{K}-1)+H^2(\theta ,\phi ) (\frac{K'}{K}+\frac{1}{r}+1)\\&+\frac{J(\theta ,\phi )\textrm{sin}\theta }{Kr}(L-L')+\frac{K'}{K}\\&\times H(\theta ,\phi ) \textrm{sin}\theta -\frac{J(\theta ,\phi ) \textrm{sin}\theta }{L}\times (K'r+K),\\ \mathbb {W}_{2}&=H(\theta ,\phi )J(\theta ,\phi ) cot\phi (\frac{K'}{K}-1) -H(\theta ,\phi )J(\theta ,\phi ) cot\theta (\frac{K'r}{K}+1-r)\\&-\frac{J^2(\theta ,\phi ) tan\phi }{K cos\phi }\\&(L-L')-\frac{K H^2(\theta ,\phi )}{L \textrm{sin}\phi }-\frac{Kr J(\theta ,\phi ) \textrm{cos}\theta }{L},\\ \mathbb {W}_{3}&=\frac{H(\theta ,\phi )J(\theta ,\phi ) cot\phi }{2}\times (\frac{K'}{K}-1) \\&+\frac{H^2(\theta ,\phi ) cot\phi }{2}\times (\frac{K'}{K}+1-r)+\frac{J^2(\theta ,\phi ) tan\phi }{2\textrm{cos}\phi }\\&(L'-L)+\frac{H^2(\theta ,\phi )K}{Lr^2\textrm{sin}\phi }+\frac{J(\theta ,\phi ) r K \textrm{cos}\theta }{L},\\ \mathbb {W}_{4}&=\frac{H(\theta ,\phi )J(\theta ,\phi )}{r}(\frac{K'}{K}-1)+H^2(\theta ,\phi ) (\frac{K'}{K}+\frac{1}{r}-1)\\&+\frac{J(\theta ,\phi )\textrm{sin}\theta }{Kr}(L-L')-\frac{K'}{L}\\&\times H(\theta ,\phi ) \textrm{sin}\theta +\frac{J(\theta ,\phi ) \textrm{sin} \theta }{L}\times (K'r+K),\\ \mathbb {W}_{5}&=\frac{K'}{2L}H(\theta ,\phi ) \textrm{sin}\theta -\frac{J(\theta ,\phi ) \textrm{sin}\theta }{2L}(K'r+K)\\&-\frac{H(\theta ,\phi )J(\theta ,\phi )}{r}(\frac{K'}{K}-1) -H^2(\theta ,\phi )\\&(\frac{K'}{K}+\frac{1}{r}-1)-\frac{J(\theta ,\phi ) \textrm{sin}\theta }{Kr} \times (L-L'),\\ \mathbb {W}_{6}&=(\frac{K}{L}+\frac{Kr}{L})\times H(\theta ,\phi )\textrm{cos}\theta +(cot\phi (\frac{K'}{K}-1)\\&+ cot\theta (\frac{K'r}{K}+1-r))H(\theta ,\phi )J(\theta ,\phi )\\&+\frac{H(\theta ,\phi ) tan\theta \textrm{sin}\theta }{K}\times (L'-L),\\ \mathbb {W}_{7}&=\frac{H(\theta ,\phi )J(\theta ,\phi )}{r}(\frac{K'}{K}-1) +H^2(\theta ,\phi )(\frac{K'}{K}+\frac{1}{r}-1)\\&+\frac{J(\theta ,\phi )\textrm{sin}\theta }{Kr}(L-L') -\frac{K'}{L}\\&\times H(\theta ,\phi )\textrm{sin}\theta +\frac{J(\theta ,\phi )\textrm{sin}\theta }{L} \times (K'r+k),\\ \mathbb {W}_{8}&=2\bigg \{(Tf_{T}-f)-f_{TT}S_{\upsilon }^{~\omega \rho } \delta ^{\upsilon }_{\omega }\delta ^{\rho }_{\rho }\nabla _{\rho } T\bigg \},\\ \mathbb {W}_{9}&=\bigg [\frac{Tf_{T}-f}{2}g_{\omega \upsilon }-f_{TT}S_{\upsilon }^{~\omega \rho } g_{\omega \omega }\delta ^{\rho }_{\rho }\nabla _{\rho } T\bigg ],\\ \mathbb {W}_{10}&=\frac{1}{3}\bigg [\frac{Tf_{T}-f}{2}-f_{TT}S_{\upsilon }^{~\omega \rho } \delta ^{\upsilon }_{\omega }\delta ^{\rho }_{\rho }\nabla _{\rho } T\bigg ],\\ \mathbb {W}_{11}&=-\frac{2}{3}\bigg [(Tf_{T}-f)-f_{TT}S_{\upsilon }^{~\omega \rho } \delta ^{\upsilon }_{\omega }\delta ^{\rho }_{\rho }\nabla _{\rho } T\bigg ],\\ \mathbb {W}_{12}&=\frac{}{}\bigg \{(Tf_{T}-f)-f_{TT}S_{\upsilon }^{~\omega \rho } \delta ^{\upsilon }_{\omega }\delta ^{\rho }_{\rho }\nabla _{\rho } T+2f_{TT}S^{\rho }\nabla _{\rho } T\\&+2f_{TT}u^{\sigma }S_{\sigma }^{~\rho }\nabla _{\rho } T\bigg \}+\bigg \{\frac{Tf_{T}-f}{2}\\&-f_{TT}S_{\upsilon }^{~\omega \rho }\delta ^{\upsilon }_{\omega } \delta ^{\rho }_{\rho }\nabla _{\rho } T\bigg \},\\ \mathbb {W}_{13}&=\frac{1}{2}\bigg \{\frac{Tf_{T}-f}{2}g_{\omega \upsilon } -f_{TT}S_{\upsilon }^{~\omega \rho }g_{\omega \omega }\delta ^{\rho }_{\rho }\nabla _{\rho } T\\&+f_{TT}u_{\upsilon }S_{\omega }^{~\rho }\nabla _{\rho }T+f_{TT}u_{\omega }S_{\upsilon }^{~\rho } \nabla _{\rho }T+f_{TT}\\&g_{\omega \upsilon }u^{\sigma }S_{\upsilon }^{~\rho }\nabla _{\rho }T\bigg \},\\ \mathbb {W}_{14}&=\frac{1}{3}\bigg \{\frac{Tf_{T}-f}{2}-f_{TT}S_{\upsilon }^{~\omega \rho } \delta ^{\upsilon }_{\omega }\delta ^{\rho }_{\rho }\nabla _{\rho }T\bigg \}h_{\omega \upsilon },\\ \mathbb {W}_{15}&=\bigg [\frac{1}{2}\bigg \{(Tf_{T}-f)-f_{TT}S_{\upsilon }^{~\omega \rho } \delta ^{\upsilon }_{\omega }\delta ^{\rho }_{\rho }\nabla _{\rho }T+2f_{TT}S^{\rho }\nabla _{\rho }T +2f_{TT}u^{\sigma }S_{\sigma }^{\rho }\nabla _{\rho }T\bigg \}+\bigg (\frac{Tf_{T}-f}{2}\\&-f_{TT}S_{\upsilon }^{~\omega \rho }\delta ^{\upsilon }_{\omega } \delta ^{\rho }_{\rho }\nabla _{\rho }T\bigg )\bigg ]h_{\omega \upsilon }. \end{aligned}$$

Appendix B

Here, the values for corrections \(\mathbb {Z}_{1}^{(D)}\), \(\mathbb {Z}_{2}^{(D)}\) are given below

$$\begin{aligned} \mathbb {Z}_{1}^{(D)}&=\frac{I'}{I^3K^2}T_{00}^{(T)}+\bigg \{\bigg (\frac{I'}{I}+\frac{1}{r} +\frac{L'}{L}\bigg )\frac{1}{K^4}+\bigg (\frac{2}{K^2}+1\bigg )\frac{K'}{K^3}\bigg \}T_{11}^{(T)}\\&-\bigg (K'-\frac{1}{Kr}\bigg )\frac{T_{22}^{(T)}}{K^3r^2}\\&-\frac{L'}{L^3K^2}T_{33}^{(T)} +T_{,1}^{11(T)}++T_{,2}^{12(T)},\\ \mathbb {Z}_{2}^{(D)}&=\frac{I_{\theta }}{I^3K^2r^2}T_{00}^{(T)}- \frac{K_{\theta }}{K^5r^2}T_{11}^{(T)}\bigg \{\bigg (\frac{I'}{I}+\frac{3K'}{K} \bigg )\frac{1}{K^4r^2}+\bigg (\frac{2}{r}+\frac{K'}{K}\bigg )\frac{1}{K^4r^2}\bigg \}T_{12}^{(T)}\\&+ \bigg \{\bigg (\frac{I_{\theta }}{I}+\frac{3K_{\theta }}{K} \bigg )\frac{1}{K^4r^4}+\frac{L_{\theta }}{K^4Lr^4}\bigg \}T_{22}^{(T)}\\&-\frac{L_{\theta }}{K^2r^2L^3}T_{33}^{(T)}+T_{,2}^{22(T)}++T_{,1}^{21(T)}. \end{aligned}$$

The values for conformal scalars \(\psi _{a}\) where \(a=1,2,3\) are as

$$\begin{aligned} \psi _{1}&=\frac{1}{2K^2}\bigg [\frac{1}{r}\bigg \{\frac{I'_{\theta }}{I}-\frac{L'_{\theta }}{L} -\frac{K_{\theta }I'}{KI}+\frac{L' K_{\theta }}{LK}-\frac{K' I_{\theta }}{KI}+ \frac{L_{\theta }K'}{LK}\bigg \}\\&+\frac{1}{r^2}\bigg (\frac{L_{\theta }}{L} -\frac{I_{\theta }}{I}\bigg ) \bigg ],\\ \psi _{2}&=-\frac{1}{2K^2}\bigg [-\frac{I''}{I}+\frac{K''}{K}+\frac{I'K'}{IK}+\frac{I'L'}{IL} -\bigg (\frac{K'}{K}\bigg )^2-\frac{K'L'}{KL}\\&+\frac{1}{r}\bigg (\frac{K'}{K}-\frac{L'}{L} \bigg )\bigg ]\\&-\frac{1}{2K^2r^2}\bigg [\frac{K_{\theta \theta }}{K}-\frac{L_{\theta \theta }}{L} -\frac{I_{\theta }K_{\theta }}{IK}+\frac{I_{\theta }L_{\theta }}{IL} -\bigg (\frac{K_{\theta }}{K}\bigg )^2 +\frac{K_{\theta }L_{\theta }}{KL}\bigg ],\\ \psi _{3}&=-\frac{1}{2K^2}\bigg [\frac{K''}{K}-\frac{L''}{L}-\frac{I'K'}{IK}+\frac{I'L'}{IL} -\bigg (\frac{K'}{K}\bigg )^2+\frac{K'L'}{KL}\\&+\frac{1}{r}\bigg (\frac{K'}{K}-\frac{I'}{I} \bigg )\bigg ]\\&-\frac{1}{2K^2r^2}\bigg [\frac{K_{\theta \theta }}{K}-\frac{I_{\theta \theta }}{I} +\frac{I_{\theta }K_{\theta }}{IK}+\frac{I_{\theta }L_{\theta }}{IL} -\bigg (\frac{K_{\theta }}{K}\bigg )^2 -\frac{K_{\theta }L_{\theta }}{KL}\bigg ]. \end{aligned}$$

The values for f(T) correction terms \(T_{aa}^{(D)}\) where \(a=1,2,3\) are given below

$$\begin{aligned} T_{00}^{(D)}&=-\frac{I^2}{8\pi }\bigg \{\frac{Tf_{T}-f}{2}+\frac{f_{TT}}{2K^2}\bigg (\frac{I'}{2I} +\mathbb {W}_{1}\bigg )T'+\frac{1}{r^2}\bigg (\frac{I_{\theta }}{2I}-\mathbb {W}_{2}\bigg )T_{\theta } \bigg \},\\ T_{11}^{(D)}&=\frac{K^2}{8\pi }\bigg \{\frac{Tf_{T}-f}{2}+\frac{f_{TT}}{2K^2r^2}\bigg ( \frac{I_{\theta }}{I}+\mathbb {W}_{3}\bigg )T'\bigg \},\\ T_{22}^{(D)}&=-\frac{K^2r^2}{8\pi }\bigg \{\frac{Tf_{T}-f}{2} -\frac{f_{TT}}{2K^2}\bigg (\mathbb {W}_{4}-\frac{I'}{I}\bigg )T'\bigg \},\\ T_{33}^{(D)}&=\frac{L^2}{8\pi }\bigg \{\frac{Tf_{T}-f}{2}-\frac{f_{TT}}{2K^2} \bigg (\mathbb {W}_{5} -\frac{I'}{I}\bigg ) T' +\frac{1}{r^2}\bigg (\mathbb {W}_{6}-\frac{I_{\theta }}{I}\bigg )T_{\theta }\bigg \},\\ T_{12}^{(D)}&=\frac{f_{TT}}{16\pi }\bigg \{\mathbb {W}_{7}-\frac{I'}{I}\bigg \}T_{\theta }. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.Z., Turki, N.B., Hanif, S. et al. Axially symmetric relativistic structures and the Riemann curvature tensor. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03149-9

Keywords

Navigation