Skip to main content
Log in

Revealing the remarkable structural, electronic, elastic, and optical properties of Zn-based fluoropervskite ZnXF3 (x = Sr, Ba) employing DFT

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Materials with versatile physical properties are essential for contemporary physical society, especially in electronics, renewable energy, transportation, medicine, and more. This intact capability holds the potential for a revolutionary shift towards environmentally friendly renewable energy sources. Consequently, the exploration of materials that encompass multiple functions becomes highly imperative. This study is concentrated on comprehending the physical characteristics of elastic and optoelectronic materials to propose novel, highly efficient materials suitable for photovoltaic device applications. Within this paper, the fundamental study of fluoroperovskite properties in the context of density functional theory is undertaken, employing the full potential linearized augmented plane wave approach. Specifically, fluoroperovskite ZnXF3 (X = Sr, Ba) is scrutinized concerning its structural, electronic, optical, and elastic attributes. The optimized crystal structural parameters for both compounds are determined as 4.41 Å for ZnSrF3 and 4.52 Å for ZnBaF3, employing the Birch-Murnaghan fitting approach for the unit cell energy versus unit cell volume. All fundamental physical properties are subsequently calculated using these optimized lattice constants. To address strongly correlated electron systems, the recently developed Modified Beck-Johnson potential is employed in this research. The tolerance factor “τ” is computed for both materials, yielding values of 0.98 for ZnSrF3 and 0.86 for ZnBaF3, affirming the structural stability of these perovskite crystal structures. The analysis of electronic properties reveals that both compounds exhibit a metallic behavior, for ZnXF3 (X = Sr, Ba) fluoroperovskites. Furthermore, the research explores the potential of these selected compounds by computing their optical properties within the energy range of 0–14 eV for incident photons, with a focus on potential optoelectronic applications. Additionally, mechanical properties for both materials are assessed using the IRelast package, with results indicating that ZnXF3 (X = Sr, Ba) fluoroPerovskites are mechanically stable, resistant to abrasion, ductile, and anisotropic. The precision and accuracy of the reported findings provide strong support for the potential applications of zinc-based ZnXF3 (X = Sr, Ba) fluoroperovskites in photovoltaic and modern semiconductor industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M Wang, C Jiang, S Zhang, X Song, Y Tang and H Cheng Nat. Chem. 10 667 (2018)

    Article  Google Scholar 

  2. S Mu, Q Liu, P Kidkhunthod, X Zhou, W Wang and Y Tang Nat. Sci. Rev. 8 nwaa178 (2021)

    Google Scholar 

  3. Z Huang, P Luo, S Jia, H Zheng and Z Lyu J. Phys. Chem. Solids 167 110746 (2022)

    Article  Google Scholar 

  4. Z Huang, P Luo, Q Wu and H Zheng J. Phys. Chem. Solids 161 110479 (2022)

    Article  Google Scholar 

  5. J Wang, P Wang, W Chen, F Wan, Y Lu, Z Tang and Z Zhang Sens. Actuators B: Chem. 380 133350 (2023)

    Article  Google Scholar 

  6. M Li, T Wang, F Chu, Q Han, Z Qin and M J Zuo IEEE Transact, Ind. Electr. 68 8777 (2021)

    Article  Google Scholar 

  7. G C Papavassiliou and J Solid State Chem. 4 330 (1981)

    Article  Google Scholar 

  8. G C Papavassiliou J. Mol. Struct. 79 395 (1982)

    Article  ADS  Google Scholar 

  9. X Zhang, Y Tang, F Zhang and C Lee Adv. Energy Mater. 6 1502588 (2016)

    Article  Google Scholar 

  10. A I L Ekimov, A L Efros and A A Onushchenkoet Solid State Commun. 56 921 (1985)

    Article  ADS  Google Scholar 

  11. B Bakri, Z Driss, S Berri and R Khenta J. Phys. 91 1513 (2017)

    Google Scholar 

  12. H W Jang, S H Baek, D Ortiz, C M Folkman, R R Das, Y H Chu, P Shafer and J X Zhang Rev. Lett. 101 107602 (2008)

    Article  ADS  Google Scholar 

  13. T L Phan, S G Min, S C Yu and S K Oh J. Magn. Mater. 304 e778 (2006)

    Article  ADS  Google Scholar 

  14. A Moure, T Hungría, A Castro, J Galy and O Peña Chem. Mater. 22 2908 (2010)

    Article  Google Scholar 

  15. J Chen, Z Zhang and H Lu Surf. Interfaces 33 102289 (2022)

    Article  Google Scholar 

  16. J M García-Lastra, J Y Buzare, M T Barriuso, J A Aramburu and M Moreno Rev. B Condens Matter Mater. Phys. 75 155101 (2007)

    Article  ADS  Google Scholar 

  17. C N Avram, M G Brik, I Tanaka and N M Avram Phys. B: Condens. Matter. 355 164 (2005)

    Article  ADS  Google Scholar 

  18. S Korbel, M A L Marques and S Botti J. Mater. Chem. C. Mater. 4 3157 (2016)

    Article  Google Scholar 

  19. M Husain, N Rahman, M Amami, T Zaman, M Sohail, R Khan, A A Khan, S A Shah Khan and A H Reshak Opt. Quant. Electr. 55 536 (2023)

    Article  Google Scholar 

  20. Z H Fu, B J Yang, M L Shan, T Li, Z Y Zhu, C P Ma and W Gao Corrosion Sci. 164 108337 (2020)

    Article  Google Scholar 

  21. A Habib et al. Materials 15 2669 (2022)

    Article  ADS  Google Scholar 

  22. G Ayub et al. ACS Omega 8 17779 (2023)

    Article  Google Scholar 

  23. M Husain, N Rahman, R Khan, M Sohail, A A Khan, H O Elansary, T K Z El-Abedin, E A Mahmoud, S A M Abdelmohsen and A Khan Semicond. Sci. Technol. 73 075004 (2021)

    Google Scholar 

  24. F T Tahir, M Husain, N Sfina, A A Rached, M Khan and N Rahman RSC Advances. 13 18788 (2023)

    Article  ADS  Google Scholar 

  25. M Manzoor et al. Comput. Theor. Chem. 1217 113928 (2022)

    Article  Google Scholar 

  26. J Y Al-Humaidi et al. Journal of Inorganic and Organomettalic Polymers and Materials. (2023)

  27. A Algahtani, N U Khan, J Iqbal, V Tirth, S Abdullaev, M S Refat, A M Alsuhaibani, A M Henaish, A Zaman and H Fetooh Inorg. Chem. Commun. 1 111542 (2023)

    Article  Google Scholar 

  28. N Chouit, S A Korba, M Slimani, H Meradji, S Ghemid and R Khenata Phys. Scripta 88 035702 (2013)

    Article  ADS  Google Scholar 

  29. N Rahman et al. Fluoride 53 542 (2020)

    Google Scholar 

  30. P. Blaha et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. (2001)

  31. E Fetil, Ş Özkan, T Ilknur, Y Erdem, B Lebe and A T Güneş Int. J. Dermatol. 41 892 (2002)

    Article  Google Scholar 

  32. M Usman, M Usman, J Rehman, M B Tahir, A Hussain, H Alrobei, M Alzaid and A Dahshan Sci. Semicond. Process. 160 107399 (2023)

    Article  Google Scholar 

  33. F D Murnaghan Proc. Nat. Acad. Sci. 30 9 (1944)

    Google Scholar 

  34. Q Zhu, J Chen, G Gou, H Chen and P Li J. Mater. Process. Technol. 246 267 (2017)

    Article  Google Scholar 

  35. S M Rasul, D R Saber and S B Aziz Results Phys. 38 105688 (2022)

    Article  Google Scholar 

  36. Y Lu, M Stegmaier, P Nukala, M A Giambra, S Ferrari, A Busacca and R Agarwal Nano Lett. 17 150 (2017)

    Article  ADS  Google Scholar 

  37. S Bouhmaidi, A Marjaoui, A Talbi, M Zanouni, K Nouneh and L Setti Comput. Condense Matter. 31 e00663 (2022)

    Article  Google Scholar 

  38. X Zhao, T Tang, Q Xie, L Gao, L Lu and Y Tang New J. Chem. 45 15857 (2021)

    Article  Google Scholar 

  39. S A Dar, V Srivastava, U K Sakalle, V Parey and G Pagare Mater. Res. Exp. 4 106104 (2017)

    Article  Google Scholar 

  40. C Lu, R Ren, Z Zhu, G Pan, G Wang, C Xu and K Sun Chem. Eng. J. 472 144878 (2023)

    Article  Google Scholar 

  41. Z Huang, Y Zhang, H Wang and J Li Appl. Phys. Lett. 123 103501 (2023)

    Article  ADS  Google Scholar 

  42. A L Selgin Int. J. Hydrogen Energy 44 3 (2019)

    Google Scholar 

  43. Born, Max, and R D Misra Cambridge University Press. 36 4 (1940)

  44. S K Mitro, K M Hossain, R Majumder and M Z Hasan J. Alloys Compd. 15 157088 (2021)

    Article  Google Scholar 

  45. C Jiang, Z Deng, B Liu, J Li, Z Han, Y Ma and Y Ma ACS Photon. 9 3089 (2022)

    Article  Google Scholar 

  46. H H Raza, G Murtaza, N Muhammad and S M Ramay Int. J. Quant. Chem. 120 e26419 (2020)

    Article  Google Scholar 

  47. S F X C I I Pugh The London, Edinburgh, Dublin Philosoph. Magazine J. Sci. 45 823 (1954)

    Article  Google Scholar 

  48. R M Khalil, S Hayat, M I Hussain, A M Rana and F Hussain (2021) AIP Advances. 11 2

  49. Y Zhang, X Liu, M Song and Z Qin Materials 16 2247 (2023)

    Article  ADS  Google Scholar 

  50. S Al-Qaisi et al. Electronics 55 1015 (2023)

    Google Scholar 

  51. S Al-Qaisi et al. J. Comput. Chem. 44 2442 (2023)

    Article  Google Scholar 

  52. M Khuili et al. J. Solid State Chem. 322 123955 (2023)

    Article  Google Scholar 

  53. S Nose J. Chem. Phys. 81 511 (1984)

    Article  ADS  Google Scholar 

  54. X Li, S Aftab, A Abbas, S Hussain, M Aslam, F Kabir and M Z Ansari Nano Energy 118 108979 (2023)

    Article  Google Scholar 

  55. B Zhang, M Hao, Y Yao, J Xiong, X Li, A B Murphy and H B Ambalampitiya J. Phys. D: Appl. Phys. 56 134001 (2023)

    Article  ADS  Google Scholar 

  56. H S Waheed et al. Phys. Status Solidi 260 2200267 (2023)

    Article  Google Scholar 

  57. D Behera, S Al-Qaisi, M Manzoor, R Sharma, V Srivastava, M M Al-Anazy, E El Al-Shiekh and S K Mukherjee Mater. Sci. Eng. B. 297 116765 (2023)

    Article  Google Scholar 

  58. B Zheng, D Lin, S Qi, Y Hu, Y Jin, Q Chen and R Yan Phys. Fluids 35 125129 (2023)

    Article  ADS  Google Scholar 

  59. M A Ali, M M Saad H-E, A M Tighezza, S Khattak, S Al-Qaisi and M Faizan, Journal of Inorganic and Organometallic Polymers and Materials. (2023)

  60. Q Mahmood et al. J. Phys. Chem. Solids 182 111584 (2023)

    Article  Google Scholar 

  61. X Song, S Yang, G Wang, J Lin, L Wang, T Meier and W Yang Opt. Exp. 31 18862 (2023)

    Article  Google Scholar 

  62. L Kong, Y Liu, L Dong, L Zhang, L Qiao, W Wang and H You Dalton Transact. 49 1947 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University Abha 61421, Asir, Kingdom of Saudi Arabia for funding this work through the Large Groups Project under the grant number RGP.2/545/44.

Funding

Deanship of Scientific Research at King Khalid University Abha 61421, Asir, Kingdom of Saudi Arabia through the Large Groups Project under the grant number RGP.2/545/44.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mudasser Husain or Nasir Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, W., Nasir, R., Husain, M. et al. Revealing the remarkable structural, electronic, elastic, and optical properties of Zn-based fluoropervskite ZnXF3 (x = Sr, Ba) employing DFT. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03146-y

Keywords

Navigation