Skip to main content
Log in

Investigation of pure, EDTA and DTPA-doped DAST single crystal for optoelectronic applications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The growth of optically good quality bulk size single crystal of pure and additives added 4-N, N-dimethylamino-4-N-methyl stilbazolium tosylate (DAST) crystal is reported by adopting the conventional slow evaporation solution technique. The grown single crystals were identified by single crystal and power X-ray Diffraction analysis. The luminescence study revealed the transition mechanism of ions. By estimating the hardness, Mayer index, yield strength, elastic stiffness constant, fracture toughness, and brittle index for the grown DAST single crystal using the Vickers micro-hardness analyzer, it is revealed that the grown crystal is a soft material. Using a continuous wave Nd-YAG laser and the standard Z-scan technique, the third-order nonlinearity of the pure and doped DAST single crystal was carefully examined. The third-order nonlinear optical properties show significantly higher values of the nonlinear absorption coefficient (β) and third-order nonlinear susceptibility (χ3). The calculated χ3 of grown pure, EDTA, and DTPA doped DAST crystals are 9.41 × 10−6, 8.06 × 10−6 and 7.92 × 10−6, respectively. The enhanced third-order nonlinear behavior suggests that the title compound is suitable for nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K Jagannathan, P Umarani, V Ratchagar, V Ramesh and S Kalainathan Spectrochim. Acta, Part A 153 735 (2016)

    Article  ADS  CAS  Google Scholar 

  2. G Viju, L Mariappan, M Jose and S Jerome Das Optik 125 5926 (2014)

    Article  ADS  CAS  Google Scholar 

  3. S N Vijayan, M Vij, K Thukral, N Khan, D Haranath, Rajnikant and M.S. Jayalakshmy Chin. J. Chem. Eng. 27, 701 (2019)

  4. H Zhang, Y Sun, X Chen and X Yan J. Cryst. Growth 324 196 (2011)

    Article  ADS  CAS  Google Scholar 

  5. S J Zhuang, B Teng, L Cao, D G Zhong, K Feng, Y X Shi, Y N Li, Q J Guo and M S Yang Adv. Mater. Res. 709 36 (2013)

    Article  CAS  Google Scholar 

  6. S R Marder, J W Perry and W P Schaefer J. Mater. Chem. 9 985 (1992)

    Article  Google Scholar 

  7. K S Rao, A K Chaudhary, M Venkatesh, K Thirupugalmani and S Brahadeeswaran Curr. Appl. Phys. 16 777 (2016)

    Article  ADS  Google Scholar 

  8. X Xu, Z Sun, K Fan, Y Jiang, R Huang, Y Wen, Q He and T Ao Sci. Rep. 5 12269 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. A S Haja Hameed, S Rohani, W C Yu, C Y Tai and C W Lan Mater. Chem. Phys. 102 60 (2007)

    Article  CAS  Google Scholar 

  10. B Liu, Y Yang, Y Zhang, X Lv, L Wei and X Wang J. Mater. Sci. Mater. Electron. 26 8097 (2015)

    Article  CAS  Google Scholar 

  11. M Manivannan, S A Martin Britto Dhas, M Balakrishnan and M Jose Appl. Phys. B 124 166 (2018)

    Article  ADS  Google Scholar 

  12. F Pan, M S Wong, C Bosshard and P Gunter Adv. Mater. 8 592 (1996)

    Article  CAS  Google Scholar 

  13. M Manivannan, S A Martin Britto Dhas and M Jose J. Cryst. Growth 455 161 (2016)

    Article  ADS  CAS  Google Scholar 

  14. E Marin Eur J. Phys. 28 429 (2007)

    Article  ADS  CAS  Google Scholar 

  15. W J Parker, R J Jenkins, C P Butler and G L Abbott J. Appl. Phys. 32 1679 (1961)

    Article  ADS  CAS  Google Scholar 

  16. S R Marder, J W Perry and C P Yakymyshy Chem. Mater. 6 1137 (1994)

    Article  CAS  Google Scholar 

  17. W L Barros Melo and R M Faria Appl. Phys. Lett. 67 3892 (1995)

  18. P Karuppasamy, V Sivasubramani, M Senthil Pandian and P Ramasamy, RSC Adv. 6 109105 (2016)

  19. M Senthil Pandian and P Ramasamy J. Cryst. Growth 312 413 (2010)

  20. S Suresh, A Ramanand and D Jayaraman Optoelectron. Adv. Mater. Rapid Commun. 4 1987 (2010)

    Google Scholar 

  21. R Surekha, R Gunaseelan, P Sagayaraj and K Ambujam Cryst. Eng. Comm. 16 7979 (2014)

    Article  CAS  Google Scholar 

  22. M Manivannan and A Saranraj Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02527-5

    Article  Google Scholar 

  23. A Saranraj, J Thirupathi, S Sathya Jude Dhas, M Jose, G Vinitha and S A Martin Britto Dhas Appl. Phy. B 124 97 (2018)

    Article  ADS  Google Scholar 

  24. P B Chapple, J Staromlynska, J A Hermann and R G McDuff J. Nonlinear Opt. Phys Mat. 6 251 (1997)

    Article  ADS  Google Scholar 

  25. P Karuppasamy, M S Pandian, P Ramasamy and S Verma Opt. Mater. 79 152 (2018)

    Article  ADS  CAS  Google Scholar 

  26. S P Ramteke, M I Baig, Mohd Shkir, S Kalainathan, M D Shirsat, G G Muley and Mohd Anis Opt. Laser Technol. 104 83 (2018)

  27. S Karthigha and C Krishnamoorthi J Phys Chem Solids 114 133 (2018)

    Article  ADS  CAS  Google Scholar 

  28. X-L Zhang and X Zhao J. Opt. 13 075202 (2011)

    Article  ADS  Google Scholar 

  29. An Fatemi Sci. Rep. 12 12893 (2022)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  30. K Thirupugalmani, S Karthick, G Shanmugam, V Kannan, B Sridhar, K Nehru and S Brahadeeswaran Opt. Mater. 49 158 (2015)

    Article  ADS  CAS  Google Scholar 

  31. J George, V Sasikala, L K Joy, D Sajan, T Arumanayagam, P Murugakoothan and G Vinitha Opt. Mater. 89 48 (2019)

    Article  ADS  CAS  Google Scholar 

  32. A T Ravichandran, R Rathika and M Kumaresavanji J. Mol. Struct. 1224 129048 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DAE-BRNS for their support by providing funds for the completion of this work (Sanction Number: 34/14/54/2014-BRNS). For the linguistic correction, the authors thank Mr. Jesu Arokiyaraj, Manager, Winner Institute of Commutative English (WICE).

Author information

Authors and Affiliations

Authors

Contributions

MM: conceptualization, investigation, original draft writing review and editing; AS, MJ and SAMBD: formal analysis.

Corresponding author

Correspondence to M. Manivannan.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, M., Saranraj, A., Jose, M. et al. Investigation of pure, EDTA and DTPA-doped DAST single crystal for optoelectronic applications. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03138-y

Keywords

Navigation