Skip to main content
Log in

Hawking radiation characteristics of Kerr–Sen black hole spacetime under Lorentz symmetry breaking

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, we had explored the quantum tunneling radiation Ford (Quant World Quant Phys Everyone, 2009) of Kerr–Sen black holes through the Lorentz symmetry breaking theory Tiago et al. (Lorentz Symmetry Breaking-Classical and Quantum Aspects, 2023) and had obtained the corrected black hole entropy, Hawking temperature Hawking (Nature 30: 248, 974), and quantum tunneling Weinberg (The Quantum Theory of Fields 1995) emissivity of Kerr–Sen black hole. Considering the kinetic equation of bosons under the Kerr–Sen black hole spacetime theory, we introduce an ether-like vector \(u_\alpha\) into the dynamics of bosons in curved spacetime Parikh and Wilczek (Phys Rev Lett 2000), and then, we had obtained the corrected kinetic equation of bosons. Through Kerr–Sen black hole line element, we had calculated the corrected black hole entropy Bekenstein (Black Holes and Entropy, Phys. Rev. D 1973), Hawking temperature, and quantum tunneling emissivity of the Kerr–Sen black hole

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Roy Kerr Phys. Rev. Lett 11 237 (1963)

  2. A Sen Phys Rev. Lett 69 1006 (1992)

  3. A Bhadra, T B Nayak, K K Nandi Phys. Lett. A 295 1 (2002)

  4. P Kraus Wilczek Nucl. Phys. B 403 433 (1995)

  5. K Srinivasan and T Padmanabhan Phys. Rev. D 60 24007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. S Shankaranarayanan, T Padmanabhan and K Srinivasan Classical Quantum Gravity 19 2671 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. R Kerner and R B Mann Classical Quantum Gravity 25 095014 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. R Kerner and R B Mann Phys. Lett. B 665 277 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. E R Livine Classical Quantum Gravity 38 13 (2021)

  10. M R Douglas and N A Nekrasov Rev. Mod. Phys. 73 977 (2001)

  11. B Zwiebach,A First Course in String Theory (2009)

  12. V Alan Kostelecký and S Samuel Phys. Rev. D 39, 683 (1989)

  13. V Alan Kostelecký , Ralf Lehnert etc Phys. Rev. Res 4 023106 (2022)

  14. V Alan Kostelecký , Robertus Potting Phys. Rev. D 104 10 (2021)

  15. V Alan Kostelecký , Enrico Lunghi etc JHEP 04 143 (2020)

  16. R P Kerr (Texas U.) Phys. Rev.L ett. 11 237 (1963)

  17. R P Kerr (Texas U.), G.C. Debney (Virginia Tech.) J. Math. Phys. 11 2807 (1970)

  18. T Aaltonen et al Phys. Rev. Lett 109 071804 (2012)

  19. R Brito , V Cardoso and P Pani Classical and Quantum Gravity (2015)

  20. G Akram, M Sadaf, I Zainab, M Abbas and A Akgül Fractal Fract 665 7 (2023)

    Google Scholar 

  21. R A Ali Elsevier 464(C) (2024)

  22. M Farman, A Akgül etc World Scientific 10 2340079 (2023)

  23. S M Carroll Spacetime and Geometry: An Introduction to General Relativity (2019)

  24. Z E Liu and X Tan Communications in Theoretical Physics 73 103 (2021)

  25. K Lin Chinese Phys. B 13 2154 (2008)

  26. K Lin, S Z Yang and X X Zeng Chinese Phys. B 17 2804 (2008)

  27. K Lin and S Z Yang Chinese Phys. B 20 110 (2011)

  28. H D Vuijk, J U Sommer, H Merlitz and J M Brader Phys. Rev. Res. 2 013320 (2020)

  29. B Sha, Z E Liu and Y Z Liu et al Chinese Phys. C 22 230 (2020)

  30. M Gomes, J R Nascimento and A Y Petrov Phys. Rev. D 81 045018 (2010)

    Article  ADS  Google Scholar 

  31. Y Pan Efficient Depth Selection for the Implementation of Noisy Quantum Approximate Optimization Algorithm 2207 04263

  32. ALEXIS Pramana - J. Phys. 76 4 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X. Hawking radiation characteristics of Kerr–Sen black hole spacetime under Lorentz symmetry breaking. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03126-2

Keywords

Navigation