Skip to main content
Log in

Ab initio study of the energetic, structural, electronic and magnetic properties of 4d transition metal (M = Ru, Rh, Pd, Ag) on Ni(100) surface

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are performed to calculate the energetic structural, electronic and magnetic properties of M/Ni(100) where M = Ru, Rh, Pd and Ag with 0.25, 0.50 and 1.00 monolayer (ML) coverages. The calculations find that Ru, Rh and Pd possess magnetic moment and increase the magnetization properties of Ni topmost surface atoms at 0.25 and 0.50 ML coverage. The adsorption of M reduces the magnetic moment of Ni substrate at 1.0 ML coverage. Adsorption of Ag has no significant effect on the magnetic moment of Ag and decreases the magnetization of Ni surface. Friedel-like oscillation is found for Ni subsurface layers at Pd/Ni(100) system consequently with a small negative magnetic moment for Pd atoms layer. The charge transfer between M and Ni and the hybridization between 3d Ni and 4d M band are responsible for the change in the magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B Abdullah J. Clean. Prod. 162 170 (2017)

    Article  Google Scholar 

  2. E S Lokteva and E V Golubina Pure and App. Chem. 91 609 (2019)

    Article  Google Scholar 

  3. J Deng, Z Bai, B Zhao, X Guo, H Zhao, H Xu and C B Park Phys. Chem. Chem. Phys. 23 20795 (2021)

    Article  Google Scholar 

  4. F Feng, H Yang, Z Yang, C H Hu, C Wu and L Wu Mater. Design 208 10994 (2021)

    Google Scholar 

  5. M Ledendecker, H Schlott and M Antonietti Energy Mater. 7 1601735 (2017)

    Article  Google Scholar 

  6. O Eriksson Rev. Lett. 66 1350 (1991)

    Article  ADS  Google Scholar 

  7. S Blügel Phys. Rev. Lett. 68 851 (1992)

    Article  ADS  Google Scholar 

  8. L Chen, R Wu, N Kioussis and J R Blanco J. Appl. Phys. 81 4161 (1997)

    Article  ADS  Google Scholar 

  9. P D Johnson Chapter 14 Electronic structure of ultrathin magnetic films (eds) D A King and D P Woodruff, The Chemical Physics of Solid Surfaces (Elsevier), Vol 8 p 545 (1997)

  10. S De and J Zhang Science 9 3314 (2016)

    Google Scholar 

  11. J Polanski, T Siudyga, P Bartczak, M Kapkowski, W Ambrozkiewicz, A Nobis, R Sitko, J Klimontko, J Szade and J Lelatko Appl. Catal B 206 16 (2017)

    Article  Google Scholar 

  12. T Siudyga, M Kapkowski, D Janas, T Wasiak, R Sitko, M Zubko, J Szade, K Balin, J Klimontko, D Lach, J Popiel, A Smoliński and J Polanski Catal. 10 513 (2020)

    Google Scholar 

  13. U Ahmad, M Afzia, F Shah, B Ismail, A Rahim and R A Khan Mater. Sci. Semicond. Process. 148 106830 (2022)

    Article  Google Scholar 

  14. M Obeid, I Erikat, B Hamad and J Khalifeh SN Appl. Sci. 2 637 (2020)

    Article  Google Scholar 

  15. E Soszka, M Jędrzejczyk, I Kocemba, N Keller and A M Ruppert Chem. Catal. 10 1026 (2020)

    Google Scholar 

  16. A I Tsiotsias, N D Charisiou IV and MA Goula Yentekakis A Rev. Nanomater. 11 28 (2021)

    Article  Google Scholar 

  17. H Arandiyan, Y Wang, J Scott, S Mesgari, H Dai and R Amal ACS Appl. Mater. Interfaces 10 16352 (2018)

    Article  Google Scholar 

  18. H Wang, D W Blaylock, A H Dam, S E Liland, K R Rout, Y A Zhu, W H Green, A Holmen and D Chen Catal. Sci. Technol. 7 1713 (2017)

    Article  Google Scholar 

  19. M Mosinska, N Stepinsk, K Chalupka, W Maniukiewicz, M I Szynkowska and P Mierczynski Catal. 10 855 (2020)

    Google Scholar 

  20. J K Nørskov, T Bligaard, J Rossmeisl and C H Christensen Nat. Chem. 1 37 (2009)

    Article  Google Scholar 

  21. A Boucher, G Jonesb and A Roldan Phys. Chem. Chem. Phys. 25 1977 (2023)

    Article  Google Scholar 

  22. H J Gotsis, I Rivalta, E Sicilia and N Russo Chem. Phys. Lett. 442 105 (2007)

    Article  ADS  Google Scholar 

  23. P Giannozzi et al. J Phys: Condens. Matte.r 21 395502 (2009)

    Google Scholar 

  24. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  25. C Kittel Introduction to solid state physics, 8th edn. (New York: Wiley) p 20 (2005)

    MATH  Google Scholar 

  26. H J Monkhorst and J D Pack Phys Rev B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. P Kratzer and J Neugebauer Front Chem. 7 106 (2019)

    Article  ADS  Google Scholar 

  28. M Methfessel and A T Paxton Phys. Rev. B 40 3616 (1989)

    Article  ADS  Google Scholar 

  29. I Erikat, M Alkhabbas and B Hamad Eur. Phys. J. B 95 171 (2022)

    Article  ADS  Google Scholar 

  30. J A Rodriguez and D W Goodman Surf. Sci. 257 897 (1992)

    Google Scholar 

  31. P O Löwdin J. Chem. Phys. 18 365 (1950)

    Article  ADS  Google Scholar 

  32. J Zhao, Z Wang, W Gao, Y Wang and B Huang Minerals 11 856 (2021)

    Article  ADS  Google Scholar 

  33. M Poberznik and A Kokalj J. Phys. Chem. Lett. 11 7122 (2020)

    Article  Google Scholar 

  34. Y T Azar, M S Lakmehsari, S M K Manzoorolajdad, V Sokhanvaran, Z Ahadi, A Shahsavani and Ph K Hopke Matt. Chem. Phys. 239 122105 (2020)

    Article  Google Scholar 

  35. J Bénard,Y Berthier, F Delarnare , E Hondros, M Huber, P Marcus ,A Masson, J Oudar and G E Rhead. Studies in Surface Science and Catalysis, (Amsterdam: Elsevier) Vol 13, Ch 6, p 150 (1983)

  36. Z V Sljivancanin and F R Vukajlovic J. Phys: Condens. Matter 10 8679 (1998)

    ADS  Google Scholar 

  37. A E García, V González-Robles and R Baquero Phys. Rev. B 59 9392 (1999)

    Article  ADS  Google Scholar 

  38. M J Zhu, D M Bylander and L Kleinman Phys. Rev. B 43 4007 (1991)

    Article  ADS  Google Scholar 

  39. H Nait-Laziz, S Bouarab and C Demangeat J. Magn. Magn. Mater. 118 365 (1993)

    Article  ADS  Google Scholar 

  40. V L Moruzzi and P M Marcus Phys. Rev. B 39 471 (1989)

    Article  ADS  Google Scholar 

  41. M Bouhassoune, B Zimmermann, P Mavropoulos, P D Wortmann, P H Dederichs, S Blügel and S Lounis Nat. Commun. 5 5558 (2014)

    Article  ADS  Google Scholar 

  42. S Ohnishi, M Weinert and A J Freeman Phys. Rev. B 30 36 (1984)

    Article  ADS  Google Scholar 

  43. H Huang, J Hermanson, J G Gay, R Richter and J R Smith Surf. Sci. 172 363 (1986)

    Article  ADS  Google Scholar 

  44. R Xiong, R D Die, L Xiao, Y-G Xu and X-Y Shen Nano. Res. Lett. 12 625 (2017)

    Article  Google Scholar 

  45. Sh S Farvid, T Sabergharesou, L N Hutfluss, M Hegde, E Prouzet and P V Radovanovic J. Amer. Chem. Soc. 136 7669 (2014)

    Article  Google Scholar 

  46. R A Jishi and H M Alyahyaei New J. Phys. 11 083030 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Erikat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeid, M., Erikat, I., Hamad, B. et al. Ab initio study of the energetic, structural, electronic and magnetic properties of 4d transition metal (M = Ru, Rh, Pd, Ag) on Ni(100) surface. Indian J Phys (2024). https://doi.org/10.1007/s12648-023-03056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03056-5

Keywords

Navigation