Skip to main content
Log in

The impact of incident wave angle and air hole radius parameter on the optical responses of a GaAs-based 2D photonic crystal, using the FDFD method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work examines the numerical simulation of a finite-difference method in the frequency domain to analyze the reflection and transmission in a two-dimensional photonic crystal. We choose a crystal of the type connected structure Gallium arsenide (GaAs) with a refractive index of 3.5 and a wavelength range of 500–1500 nm. A square lattice forms the structure and air holes periodically modulate it. This model computes optical responses by considering the effects of transverse electrical and magnetic (TE, TM) electromagnetic waves, the incident angle, and the radius of air holes in the photonic crystal, which can be used to manipulate electromagnetic waves, particularly in the visible domain, and the type of polarization (electric or magnetic) all have a direct effect on how the photonic bandgap appears, where it is, and how bread it is. These results are significant because they advance our understanding of the control of electromagnetic fields in two-dimensional photonic crystals and may have implications for the development of optical devices and technologies based on light manipulation, particularly in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E Yablonovitch J. Phys.: Condens. Matter 18 2443 (1993)

    ADS  Google Scholar 

  2. H Benisty, C Weisbuch, D Labilloy, M Rattier, C J M Smith and T F Krauss J. Lightw. Technol. 17 2063 (1999)

    Article  ADS  Google Scholar 

  3. S A Asher, J M Weissman, A Tikhonov, R D Coalson and R Kesavamoorthy Phys. Rev. E 14 69 (2004)

    Google Scholar 

  4. C Jamois, R B Wehrspohn, L C Andreani, C Hermann, O Hess and U Gösele Photon. Nanostruct. Fundam. Appl. 14 1 (2003)

    Article  ADS  Google Scholar 

  5. V Depauw, X Meng, O El-Daif, G Gomard, L Lalouat, E Drouard, C Trompoukis, A Fave, C Seassal and I Gordon IEEE 21 1 (2013)

    Google Scholar 

  6. T Yoshie and A Scherer Appl. Phys. Lett. 81 2680 (2002)

    Article  ADS  Google Scholar 

  7. B Ben Bakir, Ch Seassal, X Letartre and P Viktorovitch Appl. Phys. Lett. 3 081113 (2006)

    Article  ADS  Google Scholar 

  8. G Shambat and M S Mirotznik J. Nanophoton 11 3 (2009)

    Google Scholar 

  9. T Todorov Trifonov (2004–11–10) http://hdl.handle.net/20.500.11797/TDX260

  10. P Vukusic and J R Sambles Nature 424 852 (2003)

    Article  ADS  Google Scholar 

  11. P B Landon, C L Gilleland and R Glosser J. Mater. Sci. Mater. Electron. 18 469 (2007)

    Article  Google Scholar 

  12. A E Seago, R Oberprieler and V K Saranathan Integr. Comp. Biol. 59 1664 (2019)

    Article  Google Scholar 

  13. J P Vigneron, J Colomer, M Rassart, A L Ingram and V Lousse Phys. Rev. E 73 21914 (2006)

    Article  Google Scholar 

  14. R C Mcphedran, B N A Nicorovici, A D R Mckenzie, A L C Botten, C A R D Parker and G W E Rouse Chem. Easton 54 241 (2001)

    Google Scholar 

  15. J Zi et al Proc. Natl. Acad. Sci. USA 100 12576 (2003)

    Article  ADS  Google Scholar 

  16. N Doghmosh, S A Taya, Z M Nassar and I Colak Indian J. Phys. 97 225 (2023)

    Article  ADS  Google Scholar 

  17. A H M Almawgani et al Indian J. Phys. 97 1217 (2023)

    Article  ADS  Google Scholar 

  18. S M Srour, S A Taya, I Colak and A A Hakamy Mater. Sci. 220 2200811 (2023)

    Google Scholar 

  19. A H M Almawgani et al J. Appl. Phys. 133 243103 (2023)

    Article  ADS  Google Scholar 

  20. A H M Almawgani et al Indian J. Phys. 10 1 (2023)

    Google Scholar 

  21. W Murillo-Garcia, H A Gómez-Urrea, M E Mora-Ramos and C A Duque Condens. Matter 8 2 50 (2023)

    Article  Google Scholar 

  22. R C Rumpf, C R Garcia, E A Berry and J H Barton Prog. Electromagn. Res. B 61 55 (2015)

    Article  Google Scholar 

  23. R C Rumpf Spring C 1 345 (2006)

    Google Scholar 

  24. K Masumnia-Bisheh and C Furse IEEE Trans. Antennas Propag 69 2433 (2021)

    Article  ADS  Google Scholar 

  25. A G Hanif and T Uno Express 8 695 (2011)

    Google Scholar 

  26. K S Yee Theory Appl. Transp. Porous Media 30 141 (1966)

    Google Scholar 

  27. S Yan Numerical analysis and application of time-harmonic inverse iterative method on simulation of plasmonic effects in silver nanowire films (Doctoral dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)) (2014)

  28. R Mittra IEEE Microw. Guid. Wave Lett. 5 84 (1995)

    Article  Google Scholar 

  29. F García-Santamaría, J F Galisteo-López, P V Braun and C López Phys. Rev. B 71 19 (2005)

    Article  Google Scholar 

  30. R C Rumpf Prog. Electromagn. Res. B 36 221 (2011)

    Article  Google Scholar 

  31. K Papatryfonos et al AIP Adv. 11 2 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younouss Bahou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahou, Y., Bihi, A.N. & Oualim, E.M. The impact of incident wave angle and air hole radius parameter on the optical responses of a GaAs-based 2D photonic crystal, using the FDFD method. Indian J Phys 98, 2539–2547 (2024). https://doi.org/10.1007/s12648-023-03026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-03026-x

Keywords

Navigation