Skip to main content
Log in

Synthesis and investigation of pure and doped-ZnO nanoparticles as efficient material for photocatalytic degradation of methylene blue under solar radiations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present scenario, the growing demand of photocatalytic degradation of harmful organic pollutants has attracted much attention. In this context, the pure and doped-ZnO nanoparticles were synthesized using sol–gel method and effect of Mg, Al, Ga–Mg and Al–Mg doping on structural, morphological, optical and photocatalytic degradation properties of nanoparticles under solar radiations were investigated using X-ray diffraction, scanning electron microscopy, Fourier transform infra-red and UV–visible spectroscopy, respectively. The X-ray diffraction results shows wurtzite structure as dominating phase in these nanoparticles. It has been observed that average crystallite size calculated using Debye Scherrer’s formula was found to decreases from 41.96 to 27.97 nm for Zn0.96Al0.04O nanoparticles. The microstructures of these nanoparticles show crystalline spherical shaped grains. The UV–visible study shows blue shift of optical band gap energy of Mg and Al-doped-ZnO nanoparticles, whereas the optical band narrowing effect has been observed in Ga and Al-doped Zn0.97Mg0.03O nanoparticles. The absorbance study shows photocatalytic degradation of methylene blue by these nanoparticles. The photocatalytic degradation of methylene blue under solar radiations by Mg and Al-doped nanoparticles was found up to 85.6% and 86.65% with very high degradation rate constant of 0.07285 and 0.08911, respectively. So, the high degradation rate of Al-doped ZnO nanoparticles in sun light makes it suitable material in environmental remediation applications, especially for waste water purification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Ü Özgür, Y I Alivov, C Liu, A Teke, M Reshchikov, S Doğan and A H Morkoç J. Appl. Phys. 98 041301 (2005)

    ADS  Google Scholar 

  2. L Jiang, J Li, K Huang, S Li, Q Wang, Z Sun and X Wang ACS Omega 2 8990 (2017)

    Google Scholar 

  3. T Minami Mater. Res. Bull. 25 38 (2000)

    Google Scholar 

  4. Z Jiwei, Z Liangying and Y Xi Ceram. Int. 26 883 (2000)

    Google Scholar 

  5. C C Chang and Y E Chen IEEE Trans. Ultrson. Ferroelectr. Freq. Control. 44 624 (1997)

    Google Scholar 

  6. Z N Kayani, H Bashir, S Riaz and S Naseem Mater. Res. Bull. 115 121 (2019)

    Google Scholar 

  7. G Zheng, P Zhu, L Sun, J Jiang, J Liu, X Wang and W Li AIP Adv. 6 125306 (2016)

    ADS  Google Scholar 

  8. Y T Tsai, S J Chang, L W Ji, Y J Hsiao, I T Tang, H Y Lu and Y L Chu ACS Omega 3 13798 (2018)

    Google Scholar 

  9. Z L Tseng, C H Chiang and C G Wu Sci Rep. 5 1 (2015)

    Google Scholar 

  10. B R Lee, E D Jung, J S Park, Y S Nam, S H Min, B S Kim and M H Song Nat. Commun. 5 1 (2014)

    Google Scholar 

  11. A A Ahmad, A M Alsaad, Q M Al-Bataineh, M A H Al-Akhras, Z Albataineh, K A Alizzy and N S Daoud Polym. Bull. 78 1189 (2021)

    Google Scholar 

  12. K Ellmer Nat. Photon. 6 809 (2012)

    ADS  Google Scholar 

  13. M Kaddes, K Omri, N Kouaydi and M Zemzemi Appl. Phys. A 124 1 (2018)

    Google Scholar 

  14. S S Al Ghafry, M Z Al Abri, B Al Farsi, F Al Marzouqi, L M Al Farsi, N A Roslan and A Supangat Opt. Mater. 126 112139 (2022)

    Google Scholar 

  15. K J Chen, T H Fang, F Y Hung, L W Ji, S J Chang, S J Young and Y J Hsiao Appl. Surf. Sci. 254 5791 (2008)

    ADS  Google Scholar 

  16. A Lyubchyk, A Vicente, P U Alves, B Catela, B Soule, T Mateus and R Martins Phys. Status Solidi A 213 2317 (2016)

    ADS  Google Scholar 

  17. A Mallick and D Basak Prog. Mater. Sci. 96 86 (2018)

    Google Scholar 

  18. H Agura, A Suzuki, T Matsushita, T Aoki and M Okuda Thin Solid Films 445 263 (2003)

    ADS  Google Scholar 

  19. F H Wang, H P Chang, C C Tseng, C C Huang and H W Liu Curr. Appl. Phys. 11 S12 (2011)

    ADS  Google Scholar 

  20. C B Ong, L Y Ng and A W Mohammad Renew. Sustain. Energy Rev. 81 536 (2018)

    Google Scholar 

  21. H Ftouhi, Z El Jouad, M Jbilou, M Diani and M Addou EPJ Appl. Phys. 87 10301 (2019)

    ADS  Google Scholar 

  22. M Y Ghotbi, N Bagheri and S K Sadrnezhaad Adv. Powder Technol. 23 279 (2012)

    Google Scholar 

  23. K Kumar, M Chitkara, I S Sandhu, D Mehta and S Kumar J. Alloy Compd. 588 681 (2014)

    Google Scholar 

  24. Q Gao, Y Dai, C Li, L Yang, X Li and C Cui J. Alloys Compd. 684 669 (2016)

    Google Scholar 

  25. S Sitthichai, A Phuruangrat, T Thongtem and S Thongtem J. Ceram. Soc. JAPAN 125 122 (2017)

    Google Scholar 

  26. R Mahdavi and S S A Talesh Adv. Powder Technol. 28 1418 (2017)

    Google Scholar 

  27. D Fang, K Lin, T Xue, T C Cui, X Chen, P Yao and H Li J. Alloy Compd. 589 346 (2014)

    Google Scholar 

  28. P Saxena, P Choudhary, A Yadav, B Dewangan, V N Rai and A Mishra Appl. Phys. A 126 1 (2020)

    Google Scholar 

  29. S N Kohardafchahi, S F Shayesteh, Y Badali, S Altındal, M A J Ghozlu and Y A Kalandaragh Mater. Sci. Semicond. Process 86 173 (2018)

    Google Scholar 

  30. K S Babu, A R Reddy, C Sujatha and K V Reddy Mater. Lett. 99 97 (2013)

    Google Scholar 

  31. R Zamiri, A Kaushal, A Rebelo et al Ceram. Inter. 40 1635 (2014)

    Google Scholar 

  32. J N Hasnidawani, H N Azlina, H Norita, N N Bonnia, S Ratim and E S Ali Procedia Chem. 19 211 (2016)

    Google Scholar 

  33. M Kakihana J. Sol Gel Sci. Technol. 6 7 (1996)

    Google Scholar 

  34. S G Ullattil and P Periyat Adv. Sol-Gel Deriv. Mater. Technol. 70 271 (2017)

    Google Scholar 

  35. M A Ciciliati, M F Silva, D M Fernandes, M A de Melo, A A W Hechenleitner and E A Pineda Mater. Lett. 159 84 (2015)

    Google Scholar 

  36. L C Nehru and C Sanjeeviraja NH 6 75–110 (2014)

    Google Scholar 

  37. D D Wagman, W H Evans, V B Parker, R H Schumm, I Halow, S M Bailey and R L Nuttall J. Phys. Chem. Ref. Data 18 4 1807–1812 (1989)

    ADS  Google Scholar 

  38. K Thongsuriwong, P Amornpitoksuk and S Suwanboon Adv. Powder Technol. 24 275 (2013)

    Google Scholar 

  39. Y Xiao, L Li, Y Li, M Fang and L Zhang Nanotechnology 16 671 (2005)

    ADS  Google Scholar 

  40. G H Lee, T Kawazoe and M Ohtsu Solid state commun. 124 163 (2002)

    ADS  Google Scholar 

  41. A Belay, B Bekele and A C Reddy DJNB 14 51 (2019)

    Google Scholar 

  42. S D Lee, S H Nam, M H Kim and J H Boo Phys. Procedia 32 320 (2012)

    ADS  Google Scholar 

  43. X Gu, L Zhu, Z Ye, Q Ma, H He, Y Zhang and B Zhao Energy Mater. Sol. Cells 92 343 (2008)

    Google Scholar 

  44. S W Shin, G L Agawane, I Y Kim, S H Jo, M S Kim, G S Heo and J Y Lee Surf. Coat. Technol. 231 364 (2013)

    Google Scholar 

  45. J Iqbal, T Jan, M Ismail, N Ahmad, A Arif, M Khan and A Arshad Ceram. Int. 40 7487 (2014)

    Google Scholar 

  46. M Arshad, M M Ansari, A S Ahmed, P Tripathi, S S Z Ashraf, A H Naqvi and A Azam J. Lumin. 161 275 (2015)

    Google Scholar 

  47. S B Aziz, A Q Hassan, S J Mohammed, W O Karim, M A F Z Kadir, H Tajuddin and N N M Y Chan Nanomater. 9 216 (2019)

    Google Scholar 

  48. H Shokry Hassan, M F Elkady, A H El-Shazly and H S Bamufleh J. Nanomater. 6 6 (2014)

    Google Scholar 

  49. M Ahmad, E Ahmed, Y Zhang, N R Khalid, J Xu, M Ullah and Z Hong Curr. Appl. Phys. 13 697 (2013)

    ADS  Google Scholar 

  50. C Prabakar, S Muthukumaran and V Raja Optik 202 163714 (2020)

    ADS  Google Scholar 

  51. S Azad, N Kumar and S Chand J. Mater. Sci. Mater. Electron. 33 861 (2021)

    Google Scholar 

  52. S Agarwal, L K Jangir, K S Rathore, M Kumar and K Awasthi Appl. Phys. A 125 1 (2019)

    ADS  Google Scholar 

  53. V Etacheri, R Roshan and V Kumar Appl. Mater. Interfaces 4 2717 (2012)

    Google Scholar 

  54. A López-Suárez, D Acosta, C Magaña and F Hernández J. Mater. Sci.: Mater. Electron. 31 7389 (2020)

    Google Scholar 

  55. H Yang, J X Zhang, G J Lin, T Xian and J L Jiang Adv. Powder Technol. 24 242 (2013)

    Google Scholar 

  56. K A Isai and V S Shrivastava SN Appl. Sci. 1 1 (2019)

    Google Scholar 

  57. A Houas, H Lachheb, M Ksibi, E Elaloui, C Guillard and J M Herrmann Appl. Catal. B: Environ. 31 145 (2001)

    Google Scholar 

Download references

Acknowledgements

The Author would like to thank NIT Hamirpur for providing research fellowship funded by Ministry of Education, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SA: Synthesis, Measurements, Analysis of data, Writing-original draft, Visualization and Investigation. SC: Conceptualization, Supervision, Writing-Review and Editing and Validation.

Corresponding author

Correspondence to Seema Azad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, S., Chand, S. Synthesis and investigation of pure and doped-ZnO nanoparticles as efficient material for photocatalytic degradation of methylene blue under solar radiations. Indian J Phys 98, 2285–2297 (2024). https://doi.org/10.1007/s12648-023-02995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02995-3

Keywords

Navigation