Skip to main content
Log in

Computational analysis for the microscopic mechanism of corrosion resistance of δ´ and δ precipitates

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The quantitative research of the surface properties of δ´ and δ precipitates is critical for exploring the microscopic mechanism of corrosion resistance of Al–Li alloys. Earlier calculation, however, fails to provide the accurate value of surface energy for non-stoichiometric surface of δ´ and δ precipitates. Herein, we employed two different methods to predict the surface energy of non-stoichiometric δ´ (100) surface and δ (100) stoichiometric surface quantitatively. Besides surface energy, the theoretical calculation of work function for δ´ and δ (100) surface is well in agreement with the experimental result. Solute Zr is not only in favor of segregation to δ´/Al interface, but also easily enters into the bulk interior of δ´ precipitate by substituting Li atom, improving the corrosion resistance of Al–Li alloy due to its comparatively high electronegative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Y Betsofen, V V Antipov and M I Knyazev Russ. Metall. (Metally) 4 326 (2016)

    Article  ADS  Google Scholar 

  2. R J Rioja Mater Sci. Eng. A 257 100 (1998)

    Article  Google Scholar 

  3. A AbdEl-Aty, Y Xu, X Guo, S H Zhang, Y Ma and D Chen J. Adv. Res. 10 49 (2018)

    Article  CAS  Google Scholar 

  4. H Ovri and E T Lilleodden Acta Mater. 89 88 (2015)

    Article  ADS  CAS  Google Scholar 

  5. H Rösner, A Kalogeridis, W Liu, J Pesicka and E Nembach Mater. Sci. Eng. A. 234 298 (1997)

    Article  Google Scholar 

  6. K S Prasad, A K Mukhopadhyay, A A Gokhale et al Scripta Metall Mater. 30 10 1299 (1994)

    Article  CAS  Google Scholar 

  7. Y Lin, Z Q Zheng, S C Li et al Mater. Charact. 84 8 (2013)

    Google Scholar 

  8. C Chai, J F Li, H Wang et al Rare Mater. Eng. 44 2523 (2015)

    Google Scholar 

  9. Y L Ma, X R Zhou, X M Meng et al Trans. Nonferrous. Met. Soc. China. 26 1472 (2016)

    Article  CAS  Google Scholar 

  10. J Goebel, T Ghidini and A Graham J. Mater. Sci. Eng. A 673 16 (2016)

    Article  CAS  Google Scholar 

  11. H Wang, J Deng, B Shao and H Liu Chin. J. Eng. 41 1444 (2019)

    CAS  Google Scholar 

  12. P Niskanen and T H Sanders Corros. Sci. 22 283 (1982)

    Article  CAS  Google Scholar 

  13. Y Y Ji, Y Z Xu, B Zhang, Y Behnamian, D H Xia and W B Hu Trans. Nonferrous Met. Soc. China 31 3205 (2021)

    Article  CAS  Google Scholar 

  14. H Wang, C Z Liu, L Lu, R S Li and D Lin Rare Met. Mater. Eng. 47 1445 (2018)

    CAS  Google Scholar 

  15. G Kresse and J Furthmuller Phys. Rev. B 54 1116 (1996)

    Article  Google Scholar 

  16. G Kresse and J Joubert Phys. Rev. B 59 1758 (1999)

    Article  ADS  CAS  Google Scholar 

  17. J P Perdew, K M Burke and M Emzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Z Mao, W Chen, D N Seidman and C Wolverton Acta Mater. 59 3012 (2011)

    Article  ADS  CAS  Google Scholar 

  19. Y J Gao, C L Wen, Q F Mo, Z R Luo and C G Huang Chin. J. Nonferrous. Met. 21 2202 (2011)

    CAS  Google Scholar 

  20. S P Sun, X P Li, H J Wang et al Appl. Surf. Sci. 288 609 (2014)

    Article  ADS  CAS  Google Scholar 

  21. M G Brik, C G Ma and V Krasnenko Surf. Sci. 608 146 (2013)

    Article  ADS  CAS  Google Scholar 

  22. E Heifets, R I Eglitis and E A Kotomin Phys. Rev. B 64 235417 (2001)

    Article  ADS  Google Scholar 

  23. J G Yao, R K Pan, Y Jiang, D F Yin and H Wang Philos. Mag. 100 1539 (2020)

    Article  ADS  CAS  Google Scholar 

  24. J F Nie and B C Muddle Mater. Sci. Eng. A 319 4448 (2001)

    Google Scholar 

  25. J M Howe and D E Laughlin Philos. Mag. A 57 955 (1988)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank for financial support from the Natural Science Foundation of Shandong Province (No. ZR2020KE012) and the Science and Technology Planning Project of Longkou City (Grant No. 2021KJJH025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan-You Lou or Jian-Gang Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, SY., Bao, XJ. & Yao, JG. Computational analysis for the microscopic mechanism of corrosion resistance of δ´ and δ precipitates. Indian J Phys 98, 1707–1713 (2024). https://doi.org/10.1007/s12648-023-02947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02947-x

Keywords

Navigation