Skip to main content
Log in

Nuclear fragmentation study for \(^{84}{\rm{Kr}}_{36}+{\rm{Em}}\) interaction at 1 A GeV using extended Glauber model and bond percolation model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In interactions with \(^{84}{\rm{Kr}}_{36}\) at 1 A GeV with the various target nuclei in a nuclear emulsion, the process of nuclear fragmentation has been studied. The target mass has a big impact on how the projectile nucleus breaks apart. When a projectile nucleus interacts with a heavy target nucleus as opposed to a light one, the disruption is more severe. The modes of nuclear fragmentation are energy independent, as shown by the almost same average multiplicities and relative rates of nuclear fragmentation channels from the incident nuclei for various projectiles at various energies. The extended Glauber model’s predictions accurately capture the overall charge distributions of nuclear pieces. It is also observed that the calculations of the bond percolation model and the multiplicity and charge distributions of projectile fragments in quasinucleon target events agree satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M K Singh et al Eur. Phys. J. Plus 28 1523 (2021)

    Google Scholar 

  2. M K Singh et al Eur. Phys. J. Plus 136 419 (2021)

    Article  CAS  Google Scholar 

  3. M A Jilany J. Phys. G 29 2263 (2003)

    Article  ADS  CAS  Google Scholar 

  4. F H Liu et al Phys. Rev. C 59 941 (1999)

    Article  ADS  CAS  Google Scholar 

  5. F H Liu et al Nuovo Cimento Soc. Ital. Fis. A 111 1219 (1998)

    Article  ADS  Google Scholar 

  6. J Hüfner Phys. Rep. 125 129 (1985)

    Article  ADS  Google Scholar 

  7. M K Singh et al Indian J. Phys. 88 323 (2014)

    Article  ADS  CAS  Google Scholar 

  8. Y Akiba Prog. Theor. Phys. Suppl. 187 55 (2011)

    Article  ADS  CAS  Google Scholar 

  9. S Ahmad et al Inter. J. Mod. Phys. E 18 1929 (2009)

    Article  ADS  CAS  Google Scholar 

  10. M Tariq et al Rom. Rep. Phys. 59 773 (2007)

    CAS  Google Scholar 

  11. J Adams et al Nucl. Phys. A 757 102 (2005)

    Article  ADS  Google Scholar 

  12. M K Singh et al Indian J. Phys. 85 1523 (2011)

    Article  ADS  CAS  Google Scholar 

  13. F H Liu Chin. J. Phys. 41 486 (2003)

    ADS  CAS  Google Scholar 

  14. F H Liu Chin. J. Phys. 38 1063 (2000)

    CAS  Google Scholar 

  15. J Knoll et al Nucl. Phys. A 308 500 (1978)

    Article  ADS  Google Scholar 

  16. M K Singh et al Chinese J. Phys. 67 107 (2020)

    CAS  Google Scholar 

  17. B Kumari et al Int. J. Mod. Phys. E 31 2250061 (2022)

    Article  ADS  CAS  Google Scholar 

  18. Kajal et al Int. J. Mod. Phys. E 31 2250073 (2022)

    Article  ADS  CAS  Google Scholar 

  19. M L Cherry et al Acta Phys. Pol. B 29 2155 (1998)

    ADS  CAS  Google Scholar 

  20. A Ferrari et al Z. Phys. C 71 75 (1996)

    Article  ADS  CAS  Google Scholar 

  21. M L Cherry et al Phys. Rev. C 52 2652 (1995)

    Article  ADS  CAS  Google Scholar 

  22. M A Jilany Phy. Rev. C 70 014901 (2004)

    Article  ADS  Google Scholar 

  23. M K Singh et al Indian J. Phys. 84 1257 (2010)

    Article  ADS  CAS  Google Scholar 

  24. S Kumar et al Eur. Phys. J. Plus 136 115 (2021)

    Article  Google Scholar 

  25. M K Singh et al Indian J. Phys. 87 59 (2013)

    Article  ADS  CAS  Google Scholar 

  26. A Y Abul-Magd et al Il Nuovo Cimento A 110 1281 (1997)

    ADS  Google Scholar 

  27. S K Charagi et al Physical Review C: Nuclear Physics 41 1610 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. N Marimuthu et al Advances in High Energy Physics 2017 7907858 (2017)

    Article  Google Scholar 

  29. D Stauffer and A Aharony Introduction to Percolation Theory, 2nd edn. (London: Taylor and Francis) (1992)

    Google Scholar 

  30. X Campi Phys. Lett. B 208 351 (1988)

    Article  ADS  CAS  Google Scholar 

  31. W Bauer et al Phys. Lett. B 150 53 (1985)

    Article  ADS  Google Scholar 

  32. M L Gilkes et al Phys. Rev. Lett. 73 1590 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. J A Hauger et al Phys. Rev. Lett. 77 235 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. J A Hauger et al Phys. Rev. C 57 764 (1998)

    Article  ADS  CAS  Google Scholar 

  35. H Nakanishi and H E Stanley Phys. Rev. B 22 2466 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. H E Stanely et al Physica A 266 5 (1999)

    Article  ADS  Google Scholar 

  37. M I Adamovich et al Z. Phys. A 351 311 (1995)

    Article  ADS  CAS  Google Scholar 

  38. H L Bradt and B Peters Phys. Rev. 77 54 (1950)

    Article  ADS  CAS  Google Scholar 

  39. M El-Nadi et al J. Phys. G 25 1169 (1999)

    Article  ADS  CAS  Google Scholar 

  40. M K Hegab et al Z. Phys. A 336 345 (1990)

    ADS  CAS  Google Scholar 

  41. J S Li et al Nucl. Instr. Meth. Phys. Res. B 307 503 (2013)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the technical staff at GSI in Germany for exposing the NED to the \(^{84}\hbox {Kr}_{36}\) beam at 1 A GeV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Kumari, B. & Kajal Attri Nuclear fragmentation study for \(^{84}{\rm{Kr}}_{36}+{\rm{Em}}\) interaction at 1 A GeV using extended Glauber model and bond percolation model. Indian J Phys 98, 1445–1451 (2024). https://doi.org/10.1007/s12648-023-02941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02941-3

Keywords

Navigation