Skip to main content
Log in

Conductivity and shear viscosity of arcsin-Yang-Mills AdS black brane

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, a non-abelian arcsin-Yang-Mills AdS black brane solution is introduced. Then, the color non-abelian direct current conductivity and shear viscosity to entropy density ratio of this model is calculated using fluid-gravity duality. Our results show that the Kovtun, Son and Starinets (KSS) bound is saturated and is exactly equal to \(\frac{1}{4 \pi }\) but the color conductivity bound is violated for this model. Also, our outcomes recover the Yang-Mills AdS black brane when the coupling of Yang-Mills and gravity fields approaches zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The components of t and z in \(\phi (t,r,z)\) are disappeared by Fourier transforms.

  2. We consider \(\frac{1}{e^2}=1\)

References

  1. S I Kruglov Phys. Rev. D 75 117301 (2007)

    Article  ADS  Google Scholar 

  2. S I Kruglov Annals Phys. 293 228 (2001)

    Article  ADS  CAS  Google Scholar 

  3. S I Kruglov Phys. Lett. B 652 146 (2007)

    Article  ADS  CAS  Google Scholar 

  4. S I Kruglov Mod. Phys. Lett. A 23 245 (2008)

    Article  ADS  CAS  Google Scholar 

  5. P Gaete and J Helayël-Neto Eur. Phys. J. C 74 2816 (2014)

    Article  ADS  Google Scholar 

  6. J M Maldacena Int. J. Theor. Phys. 38 (1999)

  7. O Aharony, S S Gubser, J M Maldacena, H Ooguri and Y Oz Phys. Rept. 323 183 (2000)

    Article  ADS  CAS  Google Scholar 

  8. P Kovtun J. Phys. A 45 (2012)

  9. S Bhattacharyya, V E Hubeny, S Minwalla and M Rangamani JHEP 0802 045 (2008)

    Article  ADS  Google Scholar 

  10. M Rangamani Class. Quant. Grav. 26 224003 (2009)

    Article  ADS  Google Scholar 

  11. J Bhattacharya, S Bhattacharyya, S Minwalla and A Yarom JHEP 1405 147 (2014)

    Article  ADS  Google Scholar 

  12. D T Son Nuclear Physics B (Proc. Suppl.) 192 (2009)

  13. G Policastro, D T Son and A O Starinets Phys. Rev. Lett. 87 081601 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. G Policastro, D T Son and A O Starinets JHEP 0209 043 (2002)

    Article  ADS  Google Scholar 

  15. S A Hartnoll, D M Ramirez and J E Santos JHEP 03 170 (2016)

    Article  ADS  Google Scholar 

  16. M Sadeghi and S Parvizi Class. Quant. Grav. 33 035005 (2016)

    Article  ADS  Google Scholar 

  17. S Parvizi and M Sadeghi Eur. Phys. J. C 79 113 (2019)

    Article  ADS  Google Scholar 

  18. L Alberte, M Baggioli and O Pujolas JHEP 07 074 (2016)

    Article  ADS  Google Scholar 

  19. M Baggioli and W J Li SciPost Phys. 9 007 (2020)

    Article  ADS  Google Scholar 

  20. M Sadeghi Eur. Phys. J. C 78 875 (2018)

    Article  ADS  Google Scholar 

  21. M Baggioli, A Cisterna and K Pallikaris Phys. Rev. D 104 104067 (2021)

    Article  ADS  CAS  Google Scholar 

  22. A J Ferreira-Martins, P Meert and R da Rocha Nucl. Phys. B 957 115087 (2020)

    Article  CAS  Google Scholar 

  23. B Goutéraux, E Kiritsis and W J Li JHEP 04 122 (2016)

    ADS  Google Scholar 

  24. M Baggioli and O Pujolas JHEP 01 040 (2017)

    Article  ADS  Google Scholar 

  25. M Sadeghi Indian J. Phys. 96 4341 (2022)

    Article  ADS  CAS  Google Scholar 

  26. S I Kruglov Annalen Phys. 528 588 (2016)

    Article  ADS  Google Scholar 

  27. E Witten Adv. Theor. Math. Phys. 2 253 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. A Donos and J P Gauntlett JHEP 11 081 (2014)

    Article  ADS  Google Scholar 

  29. K Trachenko, M Baggioli, K Behnia and V V Brazhkin Phys. Rev. B 103 014311 (2021)

    Article  ADS  CAS  Google Scholar 

  30. S Grozdanov, A Lucas and K Schalm Phys. Rev. D 93 061901 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. M Blake Phys. Rev. D 94 086014 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. M Baggioli and W J Li JHEP 07 055 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Reza Saadati, Komeil Babaei, Mojtaba Shahbazi, Farmarz Rahamni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sadeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M., Khansari, S.M.M. Conductivity and shear viscosity of arcsin-Yang-Mills AdS black brane. Indian J Phys 98, 1539–1543 (2024). https://doi.org/10.1007/s12648-023-02926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02926-2

Keywords

Navigation