Skip to main content
Log in

Oxygen effect on the slow increase of power conversion efficiency of dye-sensitized solar cells via SnO2 photoanode post-annealed under different atmosphere

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Power conversion efficiency (PCE) of SnO2-based dye-sensitized solar cells (DSSCs) increases slowly over a period of days after the fabrication in the reported work. The slow increase in PCE is indirectly interpreted as the oxygen adsorption effect on the surface of SnO2 photoanode. In this work, therefore, SnO2 films were annealed again under air, pure oxygen and 5% hydrogen/nitrogen atmosphere, respectively, to verify oxygen effect on the performance of SnO2-based DSSCs. Compared to 5% H2/N2, the grain size of the SnO2 film annealed under air and O2 decreased from 38.45 to 30.14 and 27.90 nm respectively, based on X-ray diffraction (XRD) results. X-ray photoelectron spectroscopy (XPS) results indicate that the Sn 3d and O 1 s binding energy of SnO2 film annealed under air or O2 shifts toward low binding energy compared with 5% H2/N2. The conduction band (CB) values of the film annealed under air, O2 and 5% H2/N2 are − 4.527, − 4.372 and − 4.689 eV, respectively, obtained by UV–vis absorption spectra and ultraviolet photoelectron spectroscopy (UPS). Reduced energy band offset between dye and SnO2 photoanode accelerates the electron injection rate resulting in the improvement of open-circuit voltage Voc. Compared with 5% H2/N2, chemical capacitance Cμ of devices based on photoanode annealed under air and O2 decreases, while transfer resistor Rct increases by electrochemical impedance spectroscopy (EIS) measurement, improving a facilitated charge extraction and suppressing charge recombination of photogenic electron on the SnO2/electrolyte (EL) interface. Our results verify that oxygen effect plays a critical role in the improvement of Voc and PCE for DSSCs based on SnO2 photoanode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y Ren et al. Nature 613 60 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. M Chandra Sil, L S Chen, C W Lai, Y H Lee, C C Chang, and C M Chen J. Power Sources 479 229095 (2020)

  3. J Wan, L Tao, B Wang, J Zhang, H Wang and P D L Lund J. Power Sources 438 227012 (2019)

    Article  CAS  Google Scholar 

  4. O Amiri, N Mir, F Ansari and M Salavati-Niasari Electrochimica Acta 252 315 (2017)

    Article  CAS  Google Scholar 

  5. X He, J Liu, M Zhu, Z Ren and X Li Electrochimica Acta 255 187 (2017)

    Article  CAS  Google Scholar 

  6. R Ramarajan, N Purushothamreddy, R K Dileep, M Kovendhan, G Veerappan, K Thangaraju and D Paul Joseph Sol. Energy 211 547 (2020)

    Article  ADS  CAS  Google Scholar 

  7. J Yue, Y Li and G Han Electrochimica Acta 248 333 (2017)

    Article  CAS  Google Scholar 

  8. K Wei et al. J. Colloid Interface Sci. 583 24 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. F Xie, J Wang, Y Li, J Dou and M Wei Electrochimica Acta 296 142 (2019)

    Article  CAS  Google Scholar 

  10. T A Geleta and T Imae Bull. Chem. Soc. Jpn. 93 611 (2020)

    Article  CAS  Google Scholar 

  11. W A Dhafina, M Z Daud, and H Salleh Optik 207 163808 (2020)

  12. A N Ossai, A B Alabi, S C Ezike and A O Aina Curr. Res. Green Sustain. Chem. 3 100043 (2020)

    Article  Google Scholar 

  13. C Liu, J Fan, X Zhang, Y Shen, L Yang and Y Mai ACS Appl. Mater. Interfaces 7 9066 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. H Tsai et al. Science 360 67 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Y Deng, Z Xiao and J Huang Adv. Energy Mater. 5 1500721 (2015)

    Article  Google Scholar 

  16. C Zhao, B Chen, X Qiao, L Luan, K Lu and B Hu Adv. Energy Mater. 5 1500279 (2015)

    Article  Google Scholar 

  17. A Listorti et al. Energy Environ. Sci. 4 3494 (2011)

    Article  CAS  Google Scholar 

  18. L Cabau, L Pellejà, J N Clifford, C V Kumar and E Palomares J. Mater. Chem. A 1 8994 (2013)

    Article  CAS  Google Scholar 

  19. A Birkel et al. Energy Env. Sci 5 5392 (2012)

    Article  CAS  Google Scholar 

  20. J Duan, S Zou, C Yang, W Liu, H Wu and T Chen Sol. Energy 196 99 (2020)

    Article  ADS  CAS  Google Scholar 

  21. S Zou, L Song, J Duan, L Huang, W Liu, H Wu and W Xiao IEEE J. Photovolt. 11 674 (2021)

    Article  Google Scholar 

  22. M Salavati-Niasari, D Ghanbari and F Davar J. Alloys Compd. 492 570 (2010)

    Article  CAS  Google Scholar 

  23. X Teng, Y Niu, S Gong, X Liu and Z Chen J. Electrochem. 28 441 (2022)

    Google Scholar 

  24. J L Huang, D W Kuo and B Y Shew Surf. Coat. Technol. 79 263 (1996)

    Article  CAS  Google Scholar 

  25. G Q Diao, H Li, I Ivanenko, T Dontsova, I Astrelin, F Y Xie and X Z Guo IOP Conf. Ser. Mater. Sci. Eng. 474 012022 (2019)

    Article  Google Scholar 

  26. F Hossain, A H Shah, A Islam, S Rahman and S Hossain Mater. Res. Innov. 25 300 (2021)

    Article  CAS  Google Scholar 

  27. J Szuber, G Czempik, R Larciprete, D Koziej and B Adamowicz Thin Solid Films 391 198 (2001)

    Article  ADS  CAS  Google Scholar 

  28. S Fatimah, R Ragadhita, D F A Husaeni and A B D Nandiyanto ASEAN J. Sci. Eng. 2 65 (2021)

    Article  Google Scholar 

  29. R Monsef, M Ghiyasiyan-Arani and M Salavati-Niasari Ultrason. Sonochem. 42 201 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. N Mir and M Salavati-Niasari Mater. Res. Bull. 48 1660 (2013)

    Article  CAS  Google Scholar 

  31. A Azam, A S Ahmed and S S Habib J. Alloys Compd. 523 83 (2012)

    Article  CAS  Google Scholar 

  32. M Amiri, K Eskandari and M Salavati-Niasari Adv. Colloid Interface Sci. 271 101982 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. M Hossein Khorasanizadeh, R Monsef, M Salavati-Niasari, H Sh. Majdi, W Khalid Al-Azzawi, and F S Hashim Arab. J. Chem. 16 105020 (2023)

  34. R Monsef, M Ghiyasiyan-Arani and M Salavati-Niasari ACS Appl. Energy Mater. 4 680 (2021)

    Article  CAS  Google Scholar 

  35. J Das, S K Pradhan, D R Sahu, D K Mishra, S N Sarangi, B B Nayak, S Verma and B K Roul Phys. B Condens. Matter 405 2492 (2010)

    Article  ADS  CAS  Google Scholar 

  36. S Lee, J H Noh, S T Bae, I S Cho, J Y Kim, H Shin, J K Lee, H S Jung and K S Hong J. Phys. Chem. C 113 7443 (2009)

    Article  CAS  Google Scholar 

  37. I Nakamura, N Negishi, S Kutsuna, T Ihara, S Sugihara and K Takeuchi J. Mol. Catal. Chem. 161 205 (2000)

    Article  CAS  Google Scholar 

  38. J Wang, Z Wang, B Huang, Y Ma, Y Liu, X Qin, X Zhang and Y Dai ACS Appl. Mater. Interfaces 4 4024 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. S Aksoy, K Gorgun, Y Caglar and M Caglar J. Mol. Struct. 1189 181 (2019)

    Article  ADS  CAS  Google Scholar 

  40. Y Zhang, H Zhang, Y Wang and W F Zhang J. Phys. Chem. C 112 8553 (2008)

    Article  CAS  Google Scholar 

  41. T Edvinsson, N Pschirer, J Schöneboom, F Eickemeyer, G Boschloo and A Hagfeldt Chem. Phys. 357 124 (2009)

    Article  CAS  Google Scholar 

  42. V González-Pedro, X Xu, I Mora-Seró, and J Bisquert ACS Nano 4 5783 (2010)

  43. F Fabregat-Santiago, J Bisquert, L Cevey, P Chen, M Wang, S M Zakeeruddin and M Gratzel J. Am. Chem. Soc. 131 558 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. A Sacco Renew. Sustain. Energy Rev. 79 814 (2017)

  45. F Fabregat-Santiago, J Bisquert, G Garcia-Belmonte, G Boschloo and A Hagfeldt Energy Mater. Sol. Cells 87 117 (2005)

    Article  CAS  Google Scholar 

  46. B C O’Regan, K Bakker, J Kroeze, H Smit, P Sommeling and J R Durrant J. Phys. Chem. B 110 17155 (2006)

    Article  PubMed  Google Scholar 

  47. G Schlichthörl, S Y Huang, J Sprague and A J Frank J. Phys. Chem. B 101 8141 (1997)

    Article  Google Scholar 

  48. J Bisquert and V S Vikhrenko J. Phys. Chem. B 108 2313 (2004)

    Article  CAS  Google Scholar 

  49. Z Wu et al. J. Power Sources 451 227776 (2020)

    Article  CAS  Google Scholar 

  50. D Wu, W Chen, F Li, J Li and E Wang Dyes Pigments 168 151 (2019)

    Article  CAS  Google Scholar 

  51. M Pazoki, U B Cappel, E M J Johansson, A Hagfeldt and G Boschloo Energy Environ. Sci. 10 672 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Fund of China (11964019, 62065014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hong Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D.Y., Xiao, W., Duan, J.H. et al. Oxygen effect on the slow increase of power conversion efficiency of dye-sensitized solar cells via SnO2 photoanode post-annealed under different atmosphere. Indian J Phys 98, 1611–1621 (2024). https://doi.org/10.1007/s12648-023-02924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02924-4

Keywords

Navigation