Skip to main content
Log in

Properties of rogue, soliton, and shock-like dust-ion-acoustic waves in dusty plasma at Titan’s ionosphere

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The properties and stability of nonlinear dust-ion-acoustic waves are examined in dusty plasma environment such as Titan ionosphere. The plasma is composed of warm collisional negatively charged dust grains, positive ions contain source terms, and Maxwellian electrons. Based on the one-dimensional version of the standard reductive perturbation technique, the nonlinear waves are described by a complex Ginzburg-Landau (CGL) equation. Using a factorization method, the CGL equation is solved to obtain different nonlinear solutions in the form of a localized electrostatic potential pulse such as rogue, bright, and shock-like solutions. At certain plasma parameters, the rogue wave turns into a bright soliton or other nonlinear wave forms. The influence of various plasma configuration parameters, such as wave number k, relative temperatures \(\sigma _{e}\), coefficients of plasma ionization frequency \(H_{2} \), relative dust density \(\delta _{d}\), and collision frequency \(\nu \) on electrostatic nonlinear wave characteristics (amplitude and width) has been examined. The stability of the envelope soliton solution from the CGL equation has been investigated. Our results will be useful in understanding the dynamics of nonlinear excitations in Titan ionosphere where the dust grains have been well established in recent years by Cassini mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P K Shukla and A A Mamun Introduction to dusty plasma physics (Bristol: Institute of Physics) (2002)

    Book  Google Scholar 

  2. A Bouchoule Dusty Plasmas Physics, Chemistry, and Technological Impact in Plasma Processing (New York: Wiley & Sons) (1999)

    Google Scholar 

  3. A J Dessler Physics of the Jovian Magnetosphere (Cambridge: Cambridge University Press) (1983)

    Book  Google Scholar 

  4. P A Delamere and F J Bagenal Geophys. Res. 115 A10201 (2010)

    ADS  Google Scholar 

  5. R W Ebert, F Bagenal, D J McComas and C M Fowler Front Astron. Space Sci. 1 4 (2014)

    Google Scholar 

  6. O Havnes, T K Aanesen and F J Melandso Geophys. Res. 95 6581 (1990)

    Article  ADS  Google Scholar 

  7. O Havnes, T K Aslaksen, T W Hartquist, F Li, F Melandso, G E Morfill and T J Nitter Geophys. Res. 100 1731 (1995)

    Article  ADS  Google Scholar 

  8. M K Dougherty et al. Space Sci. Rev. 114 331 (2004)

    Article  ADS  Google Scholar 

  9. M Horányi, T W Hartquist, O Havnes, D A Mendis and G E Morfill Rev. Geophy. 42 RG4002 (2004)

    Article  ADS  Google Scholar 

  10. C F Kennel and F V Coroniti Geophys. Res. Lett. 4 215 (1977)

    Article  ADS  Google Scholar 

  11. O Shebanits, et al. J. Geophys. Res. Space Phys. 121 10075 (2016)

    Article  ADS  Google Scholar 

  12. O Shebanits et al. J. Geophys. Res. Space Phys. 122 7491 (2017)

    Article  ADS  Google Scholar 

  13. S Bhakta, R K Chhajlani and R P Prajapati Phys. Scr. 94 045603 (2019)

    Article  ADS  Google Scholar 

  14. H B Throop, C C Porco, R A West, J A Burns, M R Showalter and P D Nicholson Icarus 172 59 (2004)

    Article  ADS  Google Scholar 

  15. S W H Cowley, E J Bunce, T S Stallard and S Miller Geophys. Res. Lett. 30 1220 (2003)

    Article  ADS  Google Scholar 

  16. P A Delamere and F J Bagenal Geophys. Res. 108 1276 (2003)

    ADS  Google Scholar 

  17. S A Khrapak, A V Ivlev and G E Morfill Phys. Rev. E 66 046414 (2002)

    Article  ADS  Google Scholar 

  18. E Thomas, B M Annaratone and G E Morfill Phys. Rev. E 66 016405 (2002)

    Article  ADS  Google Scholar 

  19. N D’Angelo Phys. Plasmas 4 3422 (1997)

    Article  ADS  Google Scholar 

  20. N D’Angelo Phys. Plasmas 5 3155 (1998)

    Article  ADS  Google Scholar 

  21. S Ratynskaia, E Sjöqvist, L C Kwek and C H Oh Phys. Rev. Lett 93 0850001 (2004)

    Article  Google Scholar 

  22. K Kumar, P Bandyopadhyay, S Singh and A Sen Phys. Plasmas 29 123703 (2022)

    Article  ADS  Google Scholar 

  23. A Abdikian and M Eghbali Indian J. Phys. 97 7 (2023)

    Article  ADS  Google Scholar 

  24. H Demiray and A Abdikian Indian J. Phys. 95 1255 (2021)

    Article  ADS  Google Scholar 

  25. R Sabry, W M Moslem and P K Shukla Phys. Rev. E 86 0408 (2012)

    Article  Google Scholar 

  26. N N Akhmedievand and V V Afanasjev Phys. Rev. Lett. 75 2320 (1995)

    Article  ADS  Google Scholar 

  27. R E Tolba Eur. Phys. J. Plus 136 138 (2021)

    Article  Google Scholar 

  28. M E Yahia, R E Tolba and W M Moslem Adv. Space Res. 67 1412 (2021)

    Article  ADS  Google Scholar 

  29. G Shimin and M Liquan Phys. Plasmas 21 112303 (2014)

    Article  Google Scholar 

  30. J Akter, N A Chowdhury, A Mannan and A A Mamun Indian J. Phys. 95 2837 (2021)

    Article  ADS  Google Scholar 

  31. M Onorato and D Proment Phys. Lett. A 376 3057 (2012)

    Article  ADS  Google Scholar 

  32. B M Alotaibi, H A Al-Yousef, R E Tolba and W M Moslem Phys. Scr. 96 125611 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Tolba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} s_{1}= & {} \frac{k^{2}\alpha \mu _{d}}{k^{2}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) -2ku_{d0}\omega +\omega ^{2}},\,s_{2}= & \frac{s_{1}\left( \omega -ku_{d0}\right) }{k}, \\ s_{3}= & {} \frac{k^{2}}{\omega ^{2}-3k^{2}},\,s_{4}=\frac{s_{3}\omega }{k},\,b_{1}=-2ku_{d0},\,b_{3}=2ku_{d0}\left( 1+3k^{2}\right) , \\ b_{2}= & {} u_{d0}^{2}k^{2}-3k^{2}-3k^{2}\mu _{d}\sigma _{d}-1-\frac{\alpha ^{2} \delta _{d}\mu _{d}}{k^{2}},\,s_{009}\\= & {} \delta _{e}\sigma _{e}^{2}\omega ^{2}\left( 3-u_{d0}^{2}+3\mu _{d}\sigma _{d}\right) , \\ b_{4}= & {} \frac{\delta _{e}\sigma _{e}}{k^{4}}+3\alpha ^{2}\delta _{d}\mu _{d} -k^{2}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) -3k^{4}\left( u_{d0} ^{2}-3\mu _{d}\sigma _{d}\right) , \\ s_{5}= & {} \frac{-2is_{1}}{k}+\frac{2is_{1}^{2}}{k^{2}\alpha \mu _{d}}\left( k\left( u_{d0}^{2}-u_{d0}V_{g}-3\mu _{d}\sigma _{d}\right) +\left( V_{g}-u_{d0}\right) \omega \right) , \\ s_{6}= & {} \left( \frac{s_{1}}{k^{2}}+\frac{6is_{1}^{2}\sigma _{d}}{\alpha k^{2} }\right) \left( kV_{g}-\omega \right) ,\,s_{7}=\frac{2i\omega k\left( kV_{g}-\omega \right) }{\left( 3k^{2}-\omega ^{2}\right) ^{2}}, \\ s_{8}= & {} \frac{i\left( -3k^{2}+\omega ^{2}\right) \left( kV_{g}-\omega \right) }{\left( 3k^{2}-\omega ^{2}\right) ^{2}},\,s_{9}\\= & {} \frac{s_{91}+\omega s_{92}+\omega ^{2}s_{93}+\omega ^{3}s_{94}+\delta _{e}\sigma _{e}^{2}\omega ^{4} }{s_{90}}, \\ s_{91}= & {} k^{4}\left( \left( -3s_{3}^{2}-s_{4}^{2}-3\delta _{e}\sigma _{e} ^{2}\right) \left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \right) \\{} & {} +3k^{4}\alpha \delta _{d}\left( s_{2}^{2}-2s_{1}s_{2}u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d}\right) , \\ s_{92}= & {} 2k^{3}\left( 3s_{3}^{2}u_{d0}+s_{4}u_{d0}+3s_{1}s_{2}\alpha \delta _{d}-s_{3}s_{4}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \right. \\{} & {} \left. +3u_{d0} \delta _{e}\sigma _{e}^{2}\right) , \end{aligned}$$
$$\begin{aligned} s_{93}= & {} k^{2}(3s_{3}^{2}+s_{4}-4s_{3}s_{4}u_{d0}+\alpha \delta _{d}(s_{2} ^{2}-2s_{1}s_{2}u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d})+s_{009}), \\ s_{94}= & {} -2k\left( s_{3}s_{4}+s_{1}s_{2}\alpha \delta _{d}+u_{d0}\delta _{e} \sigma _{e}^{2}\right) .\,s_{902}\\= & {} 2\left( -2k^{3}u_{d0}-24k^{5} u_{d0}-6k^{3}u_{d0}\delta _{e}\sigma _{e}\right) ,\, \\ s_{90}= & {} s_{901}+s_{902}\omega +s_{903}\omega ^{2}+s_{094}\omega ^{3}+2\left( -4k^{2}-\delta _{e}\sigma _{e}\right) \omega ^{4}, \\ s_{901}= & {} 2\left( k^{4}u_{d0}^{2}-3k^{4}\delta _{d}\mu _{d}-3k^{4}\sigma _{d} \mu _{d}+12k^{6}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \right. \\{} & {} \left. +3k^{4}\sigma _{e}\delta _{e}\left( u_{d0}^{2}-3\sigma _{d}\mu _{d}\right) \right) , \\ s_{903}= & {} 2\left( k^{2}+12k^{4}-4k^{4}u_{d0}^{2}+k^{2}\delta _{d}\mu _{d}\right. \\{} & {} \left. +12k^{4}\mu _{d}\sigma _{d}+k^{2}\delta _{e}\sigma _{e}\left( 3-u_{d0}^{2} +3\mu _{d}\sigma _{d}\right) \right) , \\ s_{904}= & {} 2\left( 8k^{3}u_{d0}+2ku_{d0}\delta _{e}\sigma _{e}\right) ,\,s_{10}\\= & {} \frac{s_{101}+s_{102}\omega +s_{103}\omega ^{2}+s_{104}\omega ^{3} -4k^{2}\sigma _{e}^{2}\omega ^{4}}{s_{90}}, \\ s_{101}=~ & {} k^{4}\sigma _{e}(\left( -3s_{3}^{2}-s_{4}^{2}\right) \left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \\{} & {} +3\alpha \delta _{d}(s_{2}^{2}-2s_{1} s_{2}u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d})+s_{1010}), \\ s_{1010}= ~& {} \sigma _{e}u_{d0}(1+12k^{2})-3\mu _{d}\sigma _{e}(\delta _{d}+\sigma _{d}+12k^{2}\sigma _{d}) \\ s_{102}= ~& {} 2k^{3}\sigma _{e}(3s_{3}^{2}u_{d0}+s_{4}^{2}u_{d0}+3s_{1}s_{2} \alpha \delta _{d}-s_{3}s_{4}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \\{} & {} -(1+12k^{2})u_{d0}\sigma _{e}), \end{aligned}$$
$$\begin{aligned} s_{103}= & {} k^{2}\sigma _{e}(-3s_{3}^{2}-s_{4}+4s_{3}s_{4}u_{d0}+\sigma _{e}\\{} & {} -4k^{2}\sigma _{e}\left( -3+u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) +s_{1030}) \\ s_{104}= & {} k\sigma _{e}\left( -2\left( s_{3}s_{4}+s_{1}s_{2}\alpha \delta _{d}\right) +8k^{2}u_{d0}\sigma _{e}\right) ,\, \\ s_{11}= & {} \frac{s_{111}+s_{112}\omega +s_{113}\omega ^{2}+s_{114}\omega ^{3}}{s_{90}},s_{1030}\\= & {} \alpha \delta _{d}\left( -s_{2}^{2}+2s_{1}s_{2}u_{d0} -3s_{1}^{2}\mu _{d}\sigma _{d}+\alpha \mu _{d}\sigma _{e}\right) . \\ s_{111}= & {} -k^{4}(s_{2}^{2}u_{d0}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) \\{} & {} -6s_{1}s_{2}\mu _{d}(\delta _{d}+\sigma _{d}+12k^{2}\sigma _{d}+3\delta _{e} \sigma _{d}\sigma _{e})+s_{1110}), \\ s_{1110}= & {} u_{d0}\mu _{d}3s_{1}^{2}\sigma _{d}\left( 1+12k^{2}+3\delta _{e} \sigma _{e}\right) +(3s_{3}^{2}+s_{4}+3\delta _{e}\sigma _{e}^{2})), \\ s_{112}= & {} k^{3}(s_{2}^{2}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) +\mu _{d}(3s_{1}^{2}\sigma _{d}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) \\{} & {} +(3s_{3}^{2}+s_{4}^{2}-2s_{3}s_{4}u_{d0}+3\delta _{e}\sigma _{e}^{2}))), \\ s_{113}= & {} -k^{2}(2\alpha (s_{3}s_{4}+s_{1}s_{2}\alpha \delta _{d})\mu _{d}\\{} & {} -4k^{2}(s_{2}^{2}u_{d0}-6s_{1}s_{2}\mu _{d}\sigma _{d}+3s_{1}^{2}u_{d0}\mu _{d}\sigma _{d})\\{} & {} -s_{1130}, \\{} & {} s_{1130}\delta _{e}\left( s_{2}^{2}u_{d0}-6s_{1}s_{2}\mu _{d}\sigma _{d} +3s_{1}^{2}u_{d0}\mu _{d}\sigma _{d}\right) \sigma _{e}\\{} & {} +u_{d0}\alpha \delta _{e}\mu _{d}\sigma _{e}^{2}), \\ s_{114}= & {} -k(4k^{2}\left( s_{2}^{2}+3s_{1}^{2}\mu _{d}\sigma _{d}\right) \\{} & {} +\delta _{e}\sigma _{e}\left( s_{2}^{2}+3s_{1}^{2}\mu _{d}\sigma _{d}-\alpha \mu _{d}\sigma _{e}))\right) . \end{aligned}$$
$$\begin{aligned} s_{12}= & {} \frac{s_{121}+s_{122}\omega +s_{123}\omega ^{2}+s_{124}\omega ^{3}}{s_{90}+s_{126}\omega +s_{127}\omega ^{2}+s_{128}\omega ^{3}+s_{129}\omega ^{3} },s_{1210}\\= & {} u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d})\sigma _{e}+3\alpha \delta _{e} \mu _{d}\sigma _{e}^{2}), \\ s_{121}= & {} -k^{4}(\alpha \mu _{d}(3s_{3}^{2}+s_{4}^{2})-(1+12k^{2})(s_{2} ^{2}-2s_{1}s_{2}u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d})\\{} & {} -3\delta _{e}(s_{2} ^{2}-2s_{1}s_{2}+s_{1210}, \\ s_{122}= & {} 2k^{3}\left( -s_{3}s_{4}\alpha \mu _{d}+s_{1}s_{2}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) \right) , \\ s_{123}= & {} -k^{2}(4k^{2}\left( s_{2}^{2}-2s_{1}s_{2}u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d}\right) \\{} & {} +\delta _{e}\sigma _{e}(s_{2}^{2}-2s_{1}s_{2} u_{d0}+3s_{1}^{2}\mu _{d}\sigma _{d}-\alpha \mu _{d}\sigma _{e}))), \\ s_{124}= & {} -2ks_{1}s_{2}\left( 4k^{2}+\delta _{e}\sigma _{e}\right) ,s_{126}=2-2k^{3}u_{d0}(1+12k^{2}+3\delta _{e}\sigma _{e}), \\ s_{125}= & {} 2k^{4}(u_{d0}^{2}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) \\{} & {} -3\mu _{d}\left( \delta _{d}+\sigma _{d}+12k^{2}\sigma _{d}+3\delta _{e}\sigma _{e}\sigma _{d}\right) ), \\ s_{127}= & {} 2k^{2}(1+\delta _{d}\mu _{d}-4k^{2}\left( u_{d0}^{2}-3-3\mu _{d} \sigma _{d}\right) \\{} & {} +\delta _{e}\sigma _{e}\left( 3-u_{d0}^{2}+3\mu _{d} \sigma _{d}\right) ), \\ s_{128}= & {} -2u_{d0}s_{129},\,s_{129}=-2\left( 4k^{2}+\delta _{e}\sigma _{e}\right) .\,s_{13}\\= & {} \frac{s_{131}+s_{132}\omega +s_{133}\omega ^{2}+s_{134}\omega ^{3}}{s_{90}}, \\ s_{131}= & {} -2k^{4}s_{3}s_{4}(u_{d0}^{2}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) \\{} & {} -3\mu _{d}\left( \delta _{d}+\sigma _{d}+12k^{2}\sigma _{d} +3\delta _{e}\sigma _{d}\sigma _{e})\right) , \end{aligned}$$
$$\begin{aligned} s_{132}= & {} -k^{3}(4k^{2}s_{4}^{2}(u_{d0}^{2}-3\mu _{d}\sigma _{d})+\alpha \delta _{d}(s_{2}^{2}\\{} & {} -2s_{1}s_{2}u_{d0}-s_{4}^{2}\alpha \mu _{d}+3s_{1}^{2}\mu _{d}\sigma _{d})+s_{1320+}s_{13201}, \\ s_{1320}= & {} \left( s_{4}^{2}-\sigma _{e}\right) \delta _{e}\left( u_{d0} ^{2}-3\mu _{d}\sigma _{d}\right) \sigma _{e}\\{} & {} -4s_{3}s_{4}u_{d0}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) + \\ s_{13201}= & {} 3s_{3}^{2}(-\delta _{d}\mu _{d}+\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \left( 4k^{2}+\delta _{e}\sigma _{e}\right) )), \\ s_{133}= & {} -2k^{2}(-4k^{2}s_{4}^{2}u_{d0}+s_{1}s_{2}\alpha \delta _{d}+u_{d0} \delta _{e}\sigma _{e}\left( \sigma _{e}-s_{4}^{2}\right) \\ {}{} & {} -3s_{3}^{2} u_{d0}\left( 4k^{2}+\delta _{e}\sigma _{e}\right) +s_{1330}, \\ s_{134}= & {} -k\left( 4k^{2}\left( 3s_{3}^{2}+s_{4}\right) +\delta _{e}\left( 3s_{3}^{2}+s_{4}^{2}-\sigma _{e}\right) \sigma _{e}\right) ,\\{} & {} s_{1330}s_{3}s_{4}\left( 1+12k^{2}+3\delta _{e}\sigma _{e}\right) ),. \\ s_{14}= & {} \frac{s_{141}+s_{142}\omega +s_{143}\omega ^{2}+s_{144}\omega ^{3}}{s_{90}}, \\ s_{141}= & {} -k^{4}(4k^{2}\left( 3s_{3}+s_{4}^{2}\right) \left( u_{d0}^{2} -3\mu _{d}\sigma _{d}\right) \\{} & {} +\alpha \delta _{d}(s_{2}^{2}-2s_{1}s_{2} u_{do0}-\left( 3s_{3}+s_{4}^{2}\right) \alpha \mu _{d}+s_{1410}, \\ s_{1410}= & {} 3s_{1}^{2}\mu _{d}\sigma _{d})+\left( 3s_{3}+s_{4}^{2}\right) \delta _{e}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \sigma _{e}\\{} & {} -\delta _{e}\left( u_{d0}^{2}-3\mu _{d}\sigma _{d}\right) \sigma _{e}^{2}) \\ s_{142}= & {} -2k^{3}(\alpha \delta _{d}\left( s_{1}s_{2}-s_{3}s_{4}\alpha \mu _{d0}\right) \\{} & {} -4k^{2}(u_{d0}(3s_{3}^{2}+s_{4}^{2}-s_{3}s_{4}\mu _{d0} )+s_{1420}, \end{aligned}$$
$$\begin{aligned} s_{1420}= & {} 3s_{3}s_{4}\mu _{d}\sigma _{d})-\delta _{e}(u_{d0}(3s_{3}^{2}+s_{4} ^{2}-s_{3}s_{4}\mu _{d0})\\{} & {} +3s_{3}s_{4}\mu _{d}\sigma _{d})\sigma _{e}+u_{d0} \delta _{e}\sigma _{e}^{2}), \\ s_{143}= & {} -k(4k^{3}(3s_{3}^{2}-4s_{4}s_{3}u_{d0})+k\delta _{e}(3s_{3}^{2} +s_{4}-4s_{4}s_{3}u_{d0}-\sigma _{e}), \\ s_{134}= & {} -k\left( 8k^{2}s_{3}s_{4}+2s_{3}s_{4}\delta _{e}\sigma _{e}\right) .\,s_{15}=\frac{-s_{151}}{s_{152}}, \\ s_{151}= & {} \left( 3s_{3}^{2}+s_{4}^{2}+2s_{3}s_{4}V_{g}\right) \left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) \\{} & {} +\left( V_{g}-3\right) (\alpha \delta _{d}(s_{2}(s_{2}-s_{1510}, \\ s_{1510}= & {} 2s_{1}u_{d0}+2s_{1}V_{g})+3s_{1}^{2}\mu _{d}\sigma _{d})\\{} & {} -\delta _{e}\left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) \sigma _{e}^{2}), \\ s_{152}= & {} u_{d0}^{2}-2u_{d0}V_{g}+V_{g}^{2}-3\delta _{d}\mu _{d}+V_{g}^{2} \delta _{d}\mu _{d}\\{} & {} -3\mu _{d}\sigma _{d}-\left( V_{g}^{2}-3\right) s_{1520}, \\ s_{1520}= & {} \left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) \delta _{e}\sigma _{e}.\,s_{20}=\frac{-s_{21}}{s_{22}}, \\ s_{16}= & {} \frac{-s_{161}}{s_{152}},\,s_{17}=\frac{-s_{171}}{s_{152}},\,s_{18}=\frac{s_{181}}{s_{152}},\,s_{19}=\frac{s_{191}}{s_{152}}, \\ s_{161}= & {} \sigma _{e}(\left( 3s_{3}^{2}+s_{4}^{2}+2s_{3}s_{4}V_{g}\right) (\left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) \\{} & {} -\left( V_{g}^{2}-3\right) \alpha \delta _{d}(s_{2}^{2}+s_{1610}, \end{aligned}$$
$$\begin{aligned} s_{1610}= & {} 2s_{1}s_{2}-\left( \left( -u_{d0}+V_{g}\right) +3s_{1}^{2}\mu _{d}\sigma _{d}\right) -u_{d0}^{2}\\{} & {} -2u_{d0}V_{g}+V_{g}^{2}\left( 1+\delta _{d}\mu _{d}\right) -3\left( \delta _{d}+\sigma _{d}\right) \sigma _{e})). \\ s_{171}= & {} 3s_{3}^{2}V_{g}(-\delta _{d}\mu _{d}+\delta _{e}\left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) \sigma _{e})\\{} & {} +s_{1710} +s_{1711}+s_{1712}, \\ s_{1710}= & {} 2s_{3}s_{4}(\left( \left( u_{d0}-V_{g}\right) ^{2}-3\left( \sigma _{d}+\sigma _{d}\right) \right) \\{} & {} +3\delta _{e}\sigma _{e}\left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) ), \\ s_{1711}= & {} V_{g}(\alpha \delta _{d}(s_{2}^{2}+2s_{1}s_{2}\left( -u_{d0} +V_{g}\right) \\{} & {} -s_{4}^{2}\alpha \mu _{d}+3s_{1}^{2}\mu _{d}\sigma _{d})+s_{4} ^{2}\delta _{e}, \\{} & {} s_{1712}\left( \left( u_{d0}-V_{g}\right) ^{2}-3\left( \mu _{d}\sigma _{d}\right) \right) \sigma _{e}\\{} & {} \quad -\delta _{e}\left( \left( u_{d0} -V_{g}\right) ^{2}-3\left( \mu _{d}\sigma _{d}\right) \right) \sigma _{e} ^{2}. \\ s_{181}=\, & \alpha \delta _{d}(-s_{2}^{2}+2s_{1}s_{2}(u_{d0}-V_{g})+\alpha \mu _{d}(3s_{3}^{2}+s_{4}^{2}V_{g})\\{} & {} -3s_{1}^{2}\mu _{d}\sigma _{d})-s_{1810}, \\ s_{1810} = \,& {} (3s_{3}^{2}+s_{4}^{2}+2s_{3}s_{4}V_{g})\delta _{e}\left( \left( u_{d0}-V_{g}\right) ^{2}-3\mu _{d}\sigma _{d}\right) \sigma _{e}\\{} & {} +\left( \left( u_{d0}-V_{g}\right) ^{2}-3\left( \mu _{d}\sigma _{d}\right) \right) \sigma _{e}^{2}\delta _{e}. \\ s_{191}=\, & s_{2}^{2}\left( u_{d0}-V_{g}\right) (-1+(V_{g}^{2}-3)\delta _{e}\sigma _{e})\\{} & {} +2s_{1}s_{2}\mu _{d}((-V_{g}^{2}+3)\delta _{d}+3s_{1910} \\ 3s_{1910}= \,& \sigma _{d}-3(V_{g}^{2}-3)\delta _{e}\sigma _{e}\sigma _{d})+\left( u_{d0}-V_{g}\right) \mu _{d}(3s_{3}^{2}\alpha \\{} & {} +2s_{3}s_{4}V_{g}\alpha +3s_{1911}, \end{aligned}$$
$$\begin{aligned} s_{1911}= & {} 3s_{1}^{2}\sigma _{d}(-1+(V_{g}^{2}-3)\delta _{e}\sigma _{e} )+\alpha (V_{g}^{2}-3)\delta _{e}\sigma _{e}^{2})). \\ s_{21}= & {} 2s_{1}s_{2}\left( u_{d0}-V_{g}\right) (1-(V_{g}^{2}-3)\delta _{e}\sigma _{e})\\{} & {} +(s_{2}^{2}+3s_{1}^{2}\mu _{d}\sigma _{d})(-1+(V_{g}^{2} -3)\delta _{e}\sigma _{e})+s_{210}, \\ s_{210}= & {} \alpha \mu _{d}(3s_{3}^{2}+s_{4}^{2}+2s_{3}s_{4}V_{g})-(V_{g} ^{2}-3)\delta _{e}\sigma _{e}^{2}). \\ s_{22}= & {} (V_{g}^{2}-3)\delta _{d}\mu _{d}+\left( u_{d0}-V_{g}\right) ^{2}(1-(V_{g}^{2}-3)\delta _{e}\sigma _{e})\\{} & {} +3\mu _{d}\sigma _{d}(-1+(V_{g} ^{2}-3)\delta _{e}\sigma _{e}). \\ P_{0}= & {} P_{01}^{-1}P_{02},\,P_{1}=P_{01}^{-1}P_{11},\,P_{2} =P_{01}^{-1}P_{21}, \\ P_{01}^{-1}= & {} \frac{s_{1}}{k^{2}\mu _{d}}(-\delta _{d}\left( k\left( s_{2} -s_{1}u_{d0}\right) +s_{1}\omega \right) +\frac{-s_{3}}{k^{2}}\left( ks_{4}+s_{3}\omega \right) ). \\ P_{02}= & {} 1+\frac{is_{3}}{k^{2}}\left( 3ks_{7}-ks_{8}V_{g}+s_{8}\omega -s_{7}V_{g}\omega \right) +\frac{is_{1}\delta _{d}}{k^{2}\mu _{d}}+P_{021}, \\ P_{021}= & {} (k(s_{6}V_{g}+s_{5})(u_{d0}^{2}-u_{d0}V_{g}-3\mu _{d}\sigma _{d}))\\{} & {} -(s_{6}+s_{5}\left( u_{d0}-V_{g}\right) )\omega ). \\ P_{11}= & {} \frac{-\delta _{e}\sigma _{e}^{2}}{2}\left( 2\left( s_{15} +s_{9}\right) +\sigma _{e}\right) +P_{12}+P_{13}, \end{aligned}$$
$$\begin{aligned} P_{12}= & {} \frac{-s_{1}}{k}(3ks_{3}\left( s_{14}+s_{18}\right) +ks_{4}\left( s_{13}+s_{17}\right) +P_{120}, \\ P_{120}= & {} \omega \left( \left( s_{13}+s_{17}\right) s_{3}+s_{4}\left( s_{14}+s_{18}\right) \right) , \\ P_{13}= & {} \frac{s_{3\delta _{d}}}{k}(k(\left( s_{11}+s_{19}\right) (s_{2} -s_{1}u_{d0})\\{} & {} -(s_{12}+s_{20})(s_{2}u_{d0}-3s_{1}\mu _{d}\sigma _{d})+P_{130}, \\ P_{130}= & {} \omega \left( s_{1}\left( s_{11}+s_{19}\right) +s_{2}\left( s_{12}+s_{20}\right) \right) . \\ P_{21}= & {} \frac{-s_{1}s_{2}\alpha _{2}\delta _{d}}{k}+\frac{s_{3}s_{4}}{k}\left( -H_{0}-H_{1}+H_{2}+k^{2}\beta +\nu \right) +P_{210}, \\ P_{210}= & {} \frac{\omega s_{3}}{k^{2}}\left( s_{3}\left( H_{0}+H_{1}\right) -H_{2}\sigma _{e}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, M.A., Tolba, R.E., Alharthi, N.S. et al. Properties of rogue, soliton, and shock-like dust-ion-acoustic waves in dusty plasma at Titan’s ionosphere. Indian J Phys 98, 371–381 (2024). https://doi.org/10.1007/s12648-023-02903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02903-9

Keywords

Navigation