Skip to main content
Log in

Quantum entanglement and thermodynamics of bosonic fields in noncommutative curved spacetime

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Within the quantum field theory approach and using the technique of Bogoliubov transformations, the von Neumann boson-antiboson pair creation quantum entanglement entropy is studied in the context of the noncommutative Bianchi I universe. The investigations have shown that the behavior of entanglement entropy is strongly influenced by the choice of the noncommutativity \(\theta \) parameter, \(k_{\perp }\)-frequency modes and the structure of the curved spacetime. Moreover, the relationship between thermodynamics, Bose–Einstein condensation and quantum entanglement is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S Hill and W K Wootters Phys. Rev. Lett. 78 5022 (1997)

    Article  ADS  CAS  Google Scholar 

  2. V Vedral, M B Plenio and M A Rippin Phys. Rev. Lett. 78 2275 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. D C Santos, Entanglement: from its mathematical description to its experimental observation, PhD Thesis, University of Barcelona (2008)

  4. M Blasone, F Dell’Anno, S de Siena and F Illuminati Phys. Rev. A. 77 062304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. M F Ghiti, N Mebarki and T Rouabah AIP Conf. Proc. 1444 238 (2012)

    Article  ADS  Google Scholar 

  6. M F Ghiti, N Mebarki and H Aissaoui Int. J. Modern. Phys. A. 30 1550141 (2015)

    Article  ADS  CAS  Google Scholar 

  7. M F Ghiti and H Aissaoui Sci. Technol. 01 09 (2016)

    Google Scholar 

  8. N Mebarki, A Morchedi and H Aissaoui Int. J. Theor. Phys. 54 4124 (2015)

    Article  Google Scholar 

  9. H Garcia-Compéan and F Robledo-Padilla Class. Q. Grav. 30 235012 (2013)

    Article  ADS  Google Scholar 

  10. I Fuentes, R B Mann and E M Martinez Phys. Rev. D. 82 045030 (2010)

    Article  ADS  Google Scholar 

  11. J Hu and H Yu Phys. Rev. D. 88 104003 (2013)

    Article  ADS  Google Scholar 

  12. L N Machado, H A S Costa, I G da Paz, M Sampaio and J B Araujo Phys. Rev. D. 98 125009 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. J L Ball, I Fuentes-Schuller and F P Schuller Phys. Lett. A. 359 550 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. D E Bruschi, A Dragan, I Fuentes and J Louko Phys. Rev. D. 86 025026 (2012)

    Article  ADS  Google Scholar 

  15. A Mohadi, N Mebarki, H Aissaoui and M Boussahel Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02303-5

    Article  Google Scholar 

  16. S Adhikari, B Chakraborty and A S Majumdar Phys. Rev. A. 79 042109 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. V A Bittencourt and M Blasone J. Phys. Conf. Ser. 1612 012003 (2020)

    Article  Google Scholar 

  18. Y Li, Q Mao and Y Shi Phys. Rev. A 99 032340 (2019)

    Article  ADS  CAS  Google Scholar 

  19. Z Ebadi and B Mirza Ann. Phys. 351 363 (2014)

    Article  ADS  CAS  Google Scholar 

  20. Z Ebadi and B Mirza Int. J. Modern. Phys. A. 30 1550031 (2015)

    Article  ADS  CAS  Google Scholar 

  21. A Belfiglio, O Luongo and S Mancini Phys. Rev. D 104 043523 (2021)

    Article  ADS  CAS  Google Scholar 

  22. R Pierini and S Moradi Nuclear Phys. B 924 684 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. R Pierini, S Moradi and S Mancini Eur. Phys. J. D 73 33 (2019)

    Article  ADS  Google Scholar 

  24. P K F Kuhfitting J. Mod. Phys. 8 3 (2017)

    Google Scholar 

  25. S Kawamoto, C Y Wei and W Y Wen Class Q. Grav. 34 17 (2017)

    Article  Google Scholar 

  26. M M Ettefaghi Phys. Rev. D. 79 065022 (2009)

    Article  ADS  Google Scholar 

  27. N Mebarki AIP Conf. Proc. 1150 38 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Z Rezaei and S P Zakeri arXiv: 2007.01501 (2020)

  29. W Behr, N G Deshpande, G Duplancic, P Schupp and J Trampetic Eur. Phys. J. C. 29 441 (2003)

    Article  ADS  CAS  Google Scholar 

  30. M Buric, D Latas, V Radovanovic and J Trampetic Phys. Rev. D 75 097701 (2007)

    Article  ADS  Google Scholar 

  31. M Haghighat, M Ettefaghi and M Zeinali Phys. Rev. D. 73 013007 (2006)

    Article  ADS  Google Scholar 

  32. P K Das, N G Deshpande and G Rajasekaran Phys. Rev. D. 77 035010 (2008)

    Article  ADS  Google Scholar 

  33. A Prakash, A Mitra and P K Das Phys. Rev. D 82 055020 (2010)

    Article  ADS  Google Scholar 

  34. R Horvat and J Trampetic Phys. Lett. B 710 219 (2012)

    Article  ADS  CAS  Google Scholar 

  35. N Mebarki and L Khodja Electron. J. Theor. Phys. 7 181 (2010)

    CAS  Google Scholar 

  36. N Mebarki, S Zaim, L Khodja and H Aissaoui Phys. Scri. 78 045101 (2008)

    Article  ADS  Google Scholar 

  37. A Muhuri, D Sinha and S Ghosh Eur. Phys. J. Plus 136 35 (2021)

    Article  Google Scholar 

  38. S Zaim and L Khodja Phys. Scr. 81 055103 (2010)

    Article  ADS  Google Scholar 

  39. N Seiberg and E Witten J. High Energy Phys. 09 032 (1999)

    Article  ADS  Google Scholar 

  40. M Farahmand, H Mohammadzadeh and H Mehri-Dehnavi Int. J. Mod. Phys. A 32 15 (2017)

    Article  Google Scholar 

  41. S Mukohyama, M Seriu and H Kodama Phys. Rev. D 58 064001 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. L Parker Phys. Rev. Lett. 21 562 (1968)

    Article  ADS  Google Scholar 

  43. V M Villalba and W Greiner Phys. Rev. D. 65 025007 (2002)

    Article  ADS  Google Scholar 

  44. V M Villalba and W Greiner Mod. Phys. Lett. A 17 1883 (2002)

    Article  ADS  CAS  Google Scholar 

  45. M Abramowitz and I Stegun Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications) (1964)

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the Algerian Ministry of Higher Education and Scientific Research and D.G.R.S.D.T. for financial support. This work is also supported by the P.R.F.U. project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Ghiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A N.C. mathematical formalism

A N.C. mathematical formalism

We propose the following action:

$$\begin{aligned} S=\frac{1}{2{k}^{2}}\int d^{4}x\left( {\mathcal {L}}_{G}+ {\mathcal {L}}_{SC}\right) \end{aligned}$$
(56)

where \({\mathcal {L}}_{G}\) and \({\mathcal {L}}_{SC}\) stand for the pure gravity and matter scalar densities corresponding to the charged scalar particle.

We define

$$\begin{aligned} {\mathcal {L}}_{G}=\hat{e}*\hat{R} \end{aligned}$$
(57)

and

$$\begin{aligned} {\mathcal {L}}_{SC}=\hat{e}*\left( \hat{g}^{\mu \nu }*\left( \hat{D}_{\mu }\hat{\varphi }\right) ^{\dagger }*\hat{D}_{\nu }\hat{\varphi }\right) \end{aligned}$$
(58)

with:

$$\begin{aligned} \hat{R}=\hat{e}^{\mu }_{*a}*\hat{e}^{\nu }_{*b}*\hat{R}^{ab}_{\mu \nu } \end{aligned}$$
(59)

Applying the principle of least action, it is easy to show that the modified field equations are given bssy:

$$\begin{aligned}{} & {} \frac{\partial {\mathcal {L}}}{\partial \hat{\varphi }}-\partial _{\mu }\frac{\partial {\mathcal {L}}}{\partial \left( \partial _{\mu }\hat{\varphi }\right) }+\partial _{\mu }\partial _{\nu }\frac{\partial {\mathcal {L}}}{\partial \left( \partial _{\mu }\partial _{\nu }\hat{\varphi }\right) }-\partial _{\mu }\partial _{\nu }\partial _{\sigma }\frac{\partial {\mathcal {L}}}{\partial \left( \partial _{\mu }\partial _{\nu }\partial _{\sigma }\hat{\varphi }\right) }\nonumber \\{} & {} \quad +O\left( \theta ^{3}\right) =0 \end{aligned}$$
(60)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiti, M.F., Aissaoui, H. & Mebarki, N. Quantum entanglement and thermodynamics of bosonic fields in noncommutative curved spacetime. Indian J Phys 98, 1489–1499 (2024). https://doi.org/10.1007/s12648-023-02898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02898-3

Keywords

Navigation