Skip to main content
Log in

Spectroscopy of heavy-light mesons (\(c{\bar{s}}\), \(c{\bar{q}}\), \(b{\bar{s}}\), \(b{\bar{q}}\)) for the linear plus modified Yukawa potential using Nikiforov–Uvarov method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An approximate bound state solution of the Klein–Gordon equation is derived analytically for the 3-dimensional space with a combination framework of linear plus modified Yukawa Potential (LIMYP) using the Nikiforov–Uvarov (N–U) method for obtaining the energy eigenvalues and corresponding wave function. A detailed study of mass spectra of all combination sets of heavy-light flavor mesons vis-a-vis \((Ks/Kq; K= C, B)\) is investigated by treating both heavy-light flavor mesons non-relativistic with an effective quark–antiquark interaction potential for different quantum states. Along with that, an elucidated graphical representation is scrutinized with the calculated mass spectra obtained from the energy eigenvalue against the corresponding variables for all the combination sets of heavy-light flavors mesons. Therefore, the current framework potential provides excellent reconciliation with the experimental data of states known to date and minuscule % difference in lower quantum states, which increases with higher quantum states that can be correlated with the higher screening factor coming into the account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. A D Antia, I E Essien ,E B Umoren and C C Eze Adv Phys. Theor. Appl. 44 1 (2015)

  2. A D Antia, I O Akpan and A O Akankpo Int. J. High Energy Phys. 2 50 (2015)

  3. H Hassanabadi, S Zarrinkamar and A A Rajabi Commun. Theor. Phys. 55 541 (2011)

  4. W C Qiang and S H Dong Phys. Lett. A. 368 13 (2007)

  5. A N Ikot, Z E Maghsoodi, S Zarrinkamar and H Hassanabadi Few-Body Syst. 54 2027 (2013)

  6. A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics (Basel: Birkhauser) (1988)

    Book  Google Scholar 

  7. K R Purohit, R H Parmar and A K Rai Ann. Phys. 424 168335 (2021)

  8. A N Ikot, U S Okorie, P O Amadi, C O Edet, G J Rampho and R Sever Few-Body Syst. 62 455 (2021)

  9. E P Inyang, E S William, J E Ntib, J A Obu P C Iwuji and E P Inyang Can. J. Phys. 100 463 (2022)

  10. I B Okon, O Popoola, C N Isonguyo and A D Antia Phys. Sci. Int. J. 19 1 (2018)

  11. I B Okon, E Omugbe, A D Antia and C A Onate, L E Akpabio and O E Osafile Sci. Rep. 11, 892 (2021)

  12. O Bayrak, I Boztosun and H Ciftci Int. J. Quantum Chem. 107 540 (2007)

  13. F Cooper A Khare and U Sukhatme Phys. Rep. 251 267 (1995)

  14. R H Parmar Indian J. Phys. 93(9) 1163 (2019)

  15. E Omugbe, O E Osafile, I B Okon, U S Okorie, K O Suleman and I J Njoku, A Jahanshir and C A Onate Eur. Phys. J. D. 76 117 (2022)

  16. S M Ikhdair and R Sever Int. J. Mod. Phys. C 19 221 (2008)

    Article  Google Scholar 

  17. A D Antia, E E Ituen, H P Obong and C N Isonguyo Int. J. Recent Adv. Phys. 4 1 (2015)

  18. Z Q Ma, B W Xu Eur. Phys. Lett. 69 685 (2005)

  19. K R Purohit, R H Parmar and A K Rai J. Mol. Model. 27 358 (2021)

  20. M. Abu-Shady, T A Abdel-Karim and E M Khokha SciFed J. Quantum Phys. 2 1 (2018)

  21. H Mutuk Adv. High Energy Phys. 2019 3105373 (2019)

  22. E M Khokha, M Abu-Shady and T A Abdel-Karim Int. J. Theor. Appl. Math. 2 86 (2016)

  23. E Omugbe, O E Osafile and M C Onyeaju Adv. High Energy Phys. 2020 5901464 (2020)

  24. V H Kher, N Devlani and A K Rai Chin. Physi. C. 41 093101 (2017)

  25. S Godfrey and K Moats Phys. Rev. D. 93 034035 (2016)

    Article  Google Scholar 

  26. H Mutuk Adv. High Energy Phys. 2018 8 (2018)

  27. M Abu-Shady and E M Khokha Adv. High Energy Phys.. 2018 7032041 (2018)

  28. M N Sergeenko arxiv.org/abs/1909.10511 (2019)

  29. M Allosh, Y Mustafa, N K Ahmed and A S Mustafa Few Body Syst. 62 26 (2021)

  30. W Kwong and J L Rosner Prog. Theor. Phys. Suppl. 86 366 (1986)

  31. W Kwong, C Quigg and J L RosnerAnn. Rev. Nucl. Part. Sci. 37 325 (1987)

  32. W Kwong and P B Mackenzie, R Rosenfeld and J L Rosner Phys. Rev. D. 37 3210 (1988)

  33. W Kwong and J L Rosner Phys. Rev. D. 38 279 (1988)

    Article  CAS  Google Scholar 

  34. S Godfrey and J L Rosner Phys. Rev. D. 64 074011 (2001)

    Article  Google Scholar 

  35. S Godfrey and J L Rosner Phys. Rev. D. 64 097501 (2001)

    Article  Google Scholar 

  36. S Godfrey and J L Rosner Phys. Rev. D. 66 014012 (2002)

    Article  Google Scholar 

  37. E J Eichten K Lane and C Quigg Phys. Rev. D. 69 094019 (2004)

  38. T Barnes and S Godfrey Phys. Rev. D. 69 054008 (2004)

    Article  Google Scholar 

  39. W M Yao et al J. Phys. G. 33 (2006)

  40. V Kher, N Devlani and A K Rai Chin. Phys. C. 41 9 (2017)

  41. V H Kher and A K Rai Conf. Ser. 934 012036 (2017)

    Article  Google Scholar 

  42. H Hassanabadi, M Ghafourian and S Rahmani Few-Body Syst. 57 249 (2018)

  43. D Ebert R N Faustov, V O Galkin Phys. Rev. D. 67 014027 (2003)

  44. C Y Wong Phys. Rev. C. 65 034902 (2002)

  45. R Kumar and F Chand Physica Scripta. 85 055008 (2012)

  46. R Kumar and F Chand Commun. Theor. Phys. 59 528 (2013)

    Article  CAS  Google Scholar 

  47. R Kumar, D Kumar and F Chand Proc. DAE Symp. Nucl. Phys. 57 664 (2012)

  48. A F Al-Jamel and H Widyan Appl. Phys. Res. 4 3 (2012)

  49. L I Abou-Salem Int. J. Mod. Phys. A 20 4113 (2005)

  50. A M Badalian, B L Bakker and Y A Simonov Phys. Rev. D. 75 116001 (2007)

  51. D S Hwang, C S Kim and W Namgung Phys. Rev. D. 53 4951 (1996)

  52. A K Rai, R H Parmar and P C Vinodkumar J. Phys. G. 28 (2002)

  53. E Omugbe, O E Osafile, I B Okon, E P Inyang, E S William and A Jahanshir Few-Body Syst.. 63 194 (2022)

  54. A Maireche Int. Front. Sci. Lett. 11 29 (2017)

  55. A Maireche Jordan J. Phys. 14 59 (2021)

  56. E P Inyang, A N Ikot, E P Inyang, I O Akpan, J E Ntibi and E Omugbe, E S William Results Phys. 39 105754 (2022)

  57. C A Onate, O Ebomwonyi, K O Dopamu, J O Okoro and M O Oluwayemi Chin. J. Phys. 56 2538 (2018)

  58. H Mansour and A Gamal Adv. High Energy. Phys. 65 1234 (2018)

  59. A N Ikot, U S Okorie, I B Okon, A I Ahmadov, C O Edet, E Oladimeji, C A Duque and G J Rampho, Indian J. Phys. https://doi.org/10.1007/s12648-023-02654-7 (2023)

  60. E Omugbe, E P Inyang, I J Njoku, C Martinez-Flores, A Jahanshir, I B Okon and E S Eyube, R Horchani and C A Onate Nucl. Phys. A. 1034 122653 (2023)

  61. E P Inyang, E O Obisung, P C Iwuji, J E Ntibi, J Amajama and E S William J. Niger. Soc. Phys. Sci.. 4 884 (2022)

  62. E E Ibekwe, U S Okorie, J B Emah, E P Inyang and S A Ekong Eur. Phys. Jo. Plus. 136 87 (2021)

  63. E Omugbe, E P Inyang, I J Njoku, C Martinez-Flores, A Jahanshir, I B Okon, E S Eyube, R Horchani and C A Onate Nucl. Phys. A 1034 122653 (2023)

  64. K Gandhi and A K Rai Eur. Phys. J. C 82 777 (2022)

    Article  CAS  Google Scholar 

  65. V Patel, K Gandhi and A K Rai Few-Body Syst. 62 68 (2021)

  66. Q T Song, D Y Chen, X Liu, and T Matsuki Phys. Rev. D. 91 054031 (2015)

  67. B Q Li and K T Chao Phys. Rev. D. 79 094004 (2009)

    Article  Google Scholar 

  68. W J Deng, H Liu, L C Gui, and X H Zhong Phys. Rev. D. 95 034026 (2017)

  69. V Patel, R Chaturvedi and A K Rai Eur. Phys. J. Plus. 136 42 (2021)

  70. F Gross et al https://doi.org/10.48550/arXiv.2212.11107 (2022)

  71. H Chen et.al. Rep. Prog. Phys.86 026201 (2023)

  72. Y Mikami et al Phys. Rev. Lett. 92 012002 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. J Brodzicka et al Phys. Rev. Lett. 100 092001 (2008)

    Article  CAS  PubMed  Google Scholar 

  74. R Aaij et al Phys. Rev. Lett. 113 151601 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. R Aaij et al Phys. Rev. Lett. 115 072001 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. R Aaij et al J. High Energy Phys. 2015 24 (2015)

    Google Scholar 

  77. R Aaij et al. Phys. Rev. D. 94 (2016)

  78. M Ablikim et al Chin. Phys. C 43 083002 (2019)

    Article  CAS  Google Scholar 

  79. B Aubert et al Phys. Rev. D. 73 092001 (2006)

    Article  Google Scholar 

  80. B Aubert et al. Phys. Rev. Lett. 97 (2006)

  81. B Aubert et al. Phys. Rev. D. 79 031102 (2009)

  82. P del Amo Sanchez et al. Phys. Rev. D. 82 111101 (2010)

  83. B Singh et al Phys. Rev. D. 95 032003 (2017)

    Article  Google Scholar 

  84. B Singh et al Eur. Phys. J. A 52 325 (2016)

    Article  Google Scholar 

  85. B Singh et al. Nucl. Phys. A. 954 323 (2016)

  86. B Singh et al J. Phys. G. 46 045001 (2019)

    Article  CAS  Google Scholar 

  87. G Barucca et al Eur. Phys. J. A 55 42 (2019)

    Article  Google Scholar 

  88. G Barucca et al Eur. Phys. J. A 57 1 (2021)

    Article  Google Scholar 

  89. G Barucca et al Eur. Phys. J. A 57 1 (2021)

    Article  Google Scholar 

  90. K R Purohit, P Jakhad and A K Rai Phys. Scr. 97 044002 (2022)

  91. K R Purohit R H Parmar and A K Rai Eur. Phys. J. Plus. 135 3 (2020)

  92. E P Inyang, E P Inyang, J E Ntibi, E E Ibekwe and E S William Ind. J. Phys. https://doi.org/10.1007/s12648-020-01933-x (2020)

  93. S Godfrey and K Moats Phys. Rev. D. 93 (2016)

  94. N Devlani and A K Rai Phys. Rev. D. 84 074030 (2011)

  95. D Ebert R N Faustov and V O Galkin Eur. Phys. J. C. 66 197 (2010)

  96. P A Zyla et al. Prog. Theor. Exp. Phys. 2020 083C01 (2020)

  97. N Devlani and A K Rai Int. J. Theor. Phys. 52 2196 (2013)

  98. C Patrignani et al. Chin. Phys. C. 40 100001 (2016)

  99. V Patel R Chaturvedi and A K Rai arXiv:2201.01120v2 (2022)

  100. J B Liu and C D Lu Eur. Phys. J. C 77 312 (2017)

    Article  Google Scholar 

  101. M Shah, B Patel and P Vinodkumar Phys. Rev. D 93 094028 (2016)

  102. C P et al. Chin. Phys. C 40 100001 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal R. Purohit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, K.R., Rai, A.K. & Parmar, R.H. Spectroscopy of heavy-light mesons (\(c{\bar{s}}\), \(c{\bar{q}}\), \(b{\bar{s}}\), \(b{\bar{q}}\)) for the linear plus modified Yukawa potential using Nikiforov–Uvarov method. Indian J Phys 98, 1109–1121 (2024). https://doi.org/10.1007/s12648-023-02852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02852-3

Keywords

Navigation