Skip to main content

Advertisement

Log in

Domain structure and structural transformation of melt alumina under compression: insight from visualization method and molecular dynamic simulation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Molecular dynamic simulation has been done to investigate the domain structure and structural transformation of liquid alumina at 3500 K and under different pressures ranging from 0 to 60 GPa. The simulation results show that there is structural transformation from a tetrahedral to an octahedral network, and that structural units AlOx (x = 4, 5, 6) distribute uniformly and tend to form domain Dx. Under compression, the structure of the melt undergoes through many structural domain Dx. The existence of one- or two-domain structure in the alumina structure describes the phenomenon of ‘liquid polymorphism’. In the model, we always found large domains and several small ones, in which the largest domains spread over whole model; meanwhile, the domains with fewer atoms are uniform in all over the simulation model. Moreover, due to the change of tetrahedral to octahedral structure in the alumina coordination which is occurred parallelly with the process of merging and splitting of domain structure, the number of the boundaries between domains atoms (DB atoms) depends on pressure. The number of O456 which connects with three Al types reaches up to 4% of total at 10 GPa. The visualization method has described the domain structure and the change of largest domain Dx (x = 4, 5, 6) under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P S Salmon et al. J. Phys. Condens. Matter 24 415102 (2012)

    Article  Google Scholar 

  2. P S Salmon and A Zeidler J. Phys. Condens. Matter 27 133201 (2015)

    Article  ADS  Google Scholar 

  3. C Shi et al. Front. Mater, Sec. Ceramics and Glass (2019)

  4. O Ohtaka Phys. Rev. Lett. 92 15 (2004)

    Article  Google Scholar 

  5. Q Mei, S Sinogeikin, G Shen, S Amin and C J Benmore Rev. B 81 174113 (2010)

    Article  Google Scholar 

  6. J P Itíe, A Polian, G Calas, J Petiau, A Fontaine and H FTolentino Phys Rev. Lett. 63 398 (1989)

    Article  ADS  Google Scholar 

  7. S J Tracy, S J Turneaure and T S Duffy Phys. Rev. Lett. 120 135702 (2018)

    Article  ADS  Google Scholar 

  8. Q Mei, C J Benmore and J K R Weber Rev. Lett. 98 057802 (2007)

    Article  ADS  Google Scholar 

  9. J Zhang, R C Liebermann, T Gasparik, C T Herzberg and Y Fei J Geophys Res. Solid Earth 98 19785 (1993)

    Article  Google Scholar 

  10. B B Karki, D Bhattarai and L Stixrude Phys. Rev. B 76 104205 (2007)

    Article  ADS  Google Scholar 

  11. G Gutierrez, A B Belonoshko, R Ahuja and B Johansson Phys Rev E. 61 2723 (2000)

    Article  ADS  Google Scholar 

  12. S Biswas and B M Wong J. Phys. Chem. C. 125 21922 (2021)

    Article  Google Scholar 

  13. X Wen et al Chem. Mater. 31 7238 (2019)

    Article  Google Scholar 

  14. C Landron, L Hennet, T E Jenkins, G N Greaves, J P Coutures and A K Soper Phys. Rev. Lett. 86 4839 (2001)

    Article  ADS  Google Scholar 

  15. V V Hoang Phys. Rev. B 70 134204 (2004)

    Article  ADS  Google Scholar 

  16. Y Oka, T Takahashi, K Okada and S Ichi Iwai J. Non-Cryst. Solids 30 349 (1979)

    Article  ADS  Google Scholar 

  17. P Lamparter and R Kniep Physica B 234 405 (1997)

    Article  ADS  Google Scholar 

  18. S M E Mashri, R G Jones and A J Forty Philos. Mag. A 48 665 (1983)

    Article  ADS  Google Scholar 

  19. A J Bourdillon, S M E Mashri, A J Forty Philos. Mag. A 49 (1984)

  20. M A S Miguel, J F Sanz, L J Alvarez and J A Odriozola Phys. ReV. B 58 2369 (1998)

    Article  ADS  Google Scholar 

  21. M Hemmati and M Wilson J. Phys. Chem. B 103 4023 (1999)

    Article  Google Scholar 

  22. S Krishnan, J R K Weber, S Ansell and A D Hixson J. Am. Ceram. Soc. 83 2777 (2000)

    Article  Google Scholar 

  23. M C Wilding and C J Benmore J. Phys. Chem. B 114 5742 (2010)

    Article  Google Scholar 

  24. M Okuno, N Zotov, M Schmucker and H Schneider J. Non-Cryst. Sol. 351 1032 (2005)

    Article  ADS  Google Scholar 

  25. Q Mei, S Sinogeikin, G Shen and S Amin Rev. B 81 174113 (2010)

    Article  Google Scholar 

  26. J P Coutures, D Massiot, C Bessada and P Echegut Sci. Paris 310 1041 (1990)

    Google Scholar 

  27. P Florian, D Massiot and B Poe Reson. 5 233 (1995)

    Google Scholar 

  28. S Ansell, S Krishnan, J K R Weber, J F Felten, P C Nordine and M A Beno Rev. Lett. 78 464 (1997)

    Article  ADS  Google Scholar 

  29. S Krishnan, L Hennet, S Jahn, T A Key and P A Madden Mater. 17 2662 (2005)

    Google Scholar 

  30. V V Hoang Phys. Lett. A 335 439 (2005)

    Article  ADS  Google Scholar 

  31. V V Hoang and S K Oh J. Phys.: Condens. Matter 17 3025 (2005)

    ADS  Google Scholar 

  32. M Born and J E Mayer Z. Phys. 77 1 (1932)

    Article  ADS  Google Scholar 

  33. G Gutierrez and B Johansson Phys. Rev. B 65 104202 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. T. Ha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, N.T.T., Lan, M.T., Hong, N.V. et al. Domain structure and structural transformation of melt alumina under compression: insight from visualization method and molecular dynamic simulation. Indian J Phys 98, 423–432 (2024). https://doi.org/10.1007/s12648-023-02843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02843-4

Keywords

Navigation