Skip to main content
Log in

Decay of excited compound system 26−29Al* formed through the entrance channels 16,18O+ 10,11B

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The decay cross sections of both spherical and deformed 26−29Al* formed through the entrance channels 16O+ 10B, 16O+ 11B, 18O+ 10B, and 18O+ 11B, respectively, have been calculated. The calculations are performed by considering the Coulomb plus proximity potential as interacting potential, for different ECM values. The computed light particle (LP) production cross section was found to be in good agreement with the experimental data, which made us to extend the studies on the total decay cross section, \(\sigma_{{{\text{Total}}}}\); IMF cross section, \(\sigma_{{{\text{IMF}}}}\); and LP cross section, \(\sigma_{{{\text{LP}}}}\) for the decay of 26−29Al* formed through the same entrance channels for ECM values other than the values obtained in experiments. Thereby, we expect our predictions on \(\sigma_{{{\text{Total}}}}\), \(\sigma_{{{\text{IMF}}}}\), and \(\sigma_{{{\text{LP}}}}\) for the decay of 26−29Al* may be of great use for further experimental studies. The least standard deviation of predicted logarithm of light particle cross section shows that our predictions are better than dynamical cluster-decay model predictions in both spherical and deformed cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  1. R M Anjos et al. Phys. Rev. C 48 R2154 (1993).

    Article  ADS  Google Scholar 

  2. A Dey et al. Phys. Rev. C 76 034608 (2007).

    Google Scholar 

  3. S Kundu, A Dey, K Banerjee, T K Rana, S Muhkopadhayay, D Gupta, R Saha, S Bhattacharya and C Bhattacharya Phys. Rev. C 78 044601 (2008).

    Google Scholar 

  4. T K Rana, C Bhattacharya, S Kundu, K Banerjee, S Bhattacharya, A Dey, T K Ghosh, G Mukherjee, J K Meena, D Gupta, S Mukhopadhyay, D Pandit, S R Banerjee, A Roy and P Dhara Phys. Rev. C 78 027602 (2008).

    Google Scholar 

  5. M Ray, A Mukherjee, M K Pradhan, R Kshetri, M Saha Sarkar, R Palit, I Majumdar, P K Joshi, H C Jain and B Dasmahapatra Phys. Rev. C 78 064617 (2008).

    Google Scholar 

  6. R K Gupta, R Kumar, N K Dhiman, M Balasubramaniam, W Scheid and C Beck Phys. Rev. C 68 014610 (2003).

    Google Scholar 

  7. R K Gupta, M Balasubramaniam, R Kumar, D Singh, C Beck and W Greiner Phys. Rev. C 71 014601 (2005).

    Google Scholar 

  8. R K Gupta Clusters in Nuclei Vol. 1 - Lecture Notes in Physics (ed) C Beck (Berlin : Springer) Vol 818, ch 6, p 223 (2010).

  9. R Kumar, K Sandhu, M K Sharma and R K Gupta Phys. Rev. C 87 054610 (2013).

    Google Scholar 

  10. S Chopra,  M Bansal, M K Sharma and R K Gupta Phys. Rev. C 88 014615 (2013).

    Google Scholar 

  11. B B Singh, M K Sharma, R K Gupta and W Greiner Int. J. Mod. Phys. E 15 699 (2006).

    Article  ADS  Google Scholar 

  12. B B Singh, M K Sharma and R K Gupta Phys. Rev. C 77 054613 (2008).

    Google Scholar 

  13. B B Singh, G Kaur, M K Sharma and R K Gupta Proceedings of the. DAE Symposium on Nuclear Physics (eds) A Chatterjee, D C Biswas and P Shukla (India: Visakhapatnam) Vol 56, p 474 (2011).

  14. B B Singh, G Kaur, M K Sharma and R K Gupta Proceedings of the. DAE Symposium on Nuclear Physics (eds) S R Jain, P Shukla, A Chatterjee and V M Datar (India: Delhi) Vol 57, p 550 (2012).

  15. B B Singh, P Kumar, S Kanwar and R K Gupta Proceedings of the International Symposium on Nuclear Physics (eds) S R Jain, R G Thomas and V M Datar (India, Mumbai) Vol 58, p 380 (2013).

  16. P Moller and J R Nix Nucl. Phys. A 361 117 (1981).

    Article  ADS  Google Scholar 

  17. H J Krappe, J R Nix and A J Sierk Phys. Rev. Lett. 42 215 (1979).

    Article  ADS  Google Scholar 

  18. L Faute Jr, N Added, R M Anjos, N Csrlin, M M Coimbra, M C S Figueira, R Matheus, E M Szanto and A Szanto de Toledo Nucl. Phys. A 552 82 (1993).

    Google Scholar 

  19. M Kaur, B B Singh, S K Patra and R K Gupta Phys. Rev. C 95 014611 (2017).

    Google Scholar 

  20. R K Gupta, S K Arun, R Kumar and M Bansal Nucl. Phys. A 834 176c (2010).

    Google Scholar 

  21. M K Sharma, S Kanwar, G Sawhney and R K Gupta Phys. Rev. C 85 064602 (2012).

    Article  ADS  Google Scholar 

  22. M Kaur, R Kumar and M K Sharma Phys. Rev. C 85 014609 (2012).

    Google Scholar 

  23. K Sandhu, M K Sharma and R K Gupta Phys. Rev. C 85 024604 (2012).

    Google Scholar 

  24. K Sandhu, M K Sharma and R K Gupta Phys. Rev. C 86 064611 (2012).

    Google Scholar 

  25. M Bansal, S Chopra and R K Gupta Phys. Rev. C 86 034604 (2012).

    Article  ADS  Google Scholar 

  26. G Kaur and M K Sharma Nucl. Phys. A 884 36 (2012).

    Article  ADS  Google Scholar 

  27. G Kaur and M K Sharma Phys. Rev. C 87 044601 (2013).

    Article  ADS  Google Scholar 

  28. Niyti and R K Gupta Phys. Rev. C 89 014603 (2014).

  29. B B Singh, M Kaur, M K Sharma and R K Gupta J. Phys. Conf. Ser. 569 012030 (2015).

    Article  Google Scholar 

  30. B B Singh, M Kaur, M K Sharma and R K Gupta EPJ Web Conf. 86 00049 (2015).

  31. B B Singh, M Kaur and R K Gupta JPS Conf. Ser. 6 01001 (2015).

    Google Scholar 

  32. B B Singh, M Kaur and R K Gupta EPJ Web Conf. 86 00048 (2015).

  33. B B Singh and M Kaur Curr. Rep. Sci. Tech. 1 78 (2015).

    Google Scholar 

  34. B B Singh and M Kaur Curr. Rep. Sci. Tech. 1 85 (2015).

    Google Scholar 

  35. T Matsuse, C Beck, R Nouicer and D Mahboub Phys. Rev. C 55 1380 (1997).

    Article  ADS  Google Scholar 

  36. M S Gautam, S Duhan, R P Chahal, H Khatri, S B Kuhar and K Vinod Phys. Rev. C 102 014614 (2020).

    Google Scholar 

  37. J Kaur, A Kaur, M S Gautam and M K Sharma Phys. Rev. C 106 034615 (2022).

    Article  ADS  Google Scholar 

  38. Vijay, N Grover, K Sharma, M S Gautam, M K Sharma and R P Chahal Phys. Rev. C 106 064609 (2022).

  39. Vijay, R P Chahal, M S Gautam, S Duhan and H Khatri Phys. Rev. C 103 024607 (2021).

  40. N K Deb et al. Phys. Rev. C 102 034603 (2020).

    Google Scholar 

  41. A C Visakh, E Prasad, P V Laveen, M Shareef and A Shamlath Phys. Rev. C 104 054602 (2021).

    Google Scholar 

  42. P Jisha et al. Phys. Rev. C 105 054614 (2022).

    Google Scholar 

  43. A Rani et al. Phys. Rev. C 106 064606 (2022).

    Google Scholar 

  44. M Kaur, B B Singh, M K Sharma and R K Gupta Nucl. Phys. A 969 14 (2018).

    Google Scholar 

  45. R M Anjos Phys. Rev. C 49 2018 (1994).

  46. C Karthikraj and M Balasubramaniam Phys. Rev. C 87 024608 (2013).

    Article  ADS  Google Scholar 

  47. K P Santhosh and A Joseph Pramana J. Phys. 59 599 (2002).

    Google Scholar 

  48. D N Poenaru, W Greiner and E Hourani Phys. Rev. C 51 594 (1995).

    Google Scholar 

  49. J Blocki, J Randrup, W J Swiatecki and C F Tsang Ann. Phys. (N.Y.) 105 427 (1977).

  50. J Blocki and W J Swiatecki Ann. Phys. (N.Y) 132 53 (1981).

  51. K P Santhosh, V B Jose, A Joseph and K M Varier Nucl. Phys. A 817 35 (2009).

    Google Scholar 

  52. K P Santhosh and V B Jose Nucl. Phys. A 922 191 (2014).

    Article  ADS  Google Scholar 

  53. K P Santhosh and V B Jose Rom. Rep. Phys. 66 939 (2014).

    Google Scholar 

  54. K P Kumar and K P Santhosh Pramana J. Phys. 95 114 (2021).

    Google Scholar 

  55. K P Santhosh, P V Subha and B Priyanka Pramana  J. Phys. 86 819 (2015).

    Google Scholar 

  56. K P Santhosh, P V Subha and B Priyanka Eur. Phys. J. A 52 125 (2016).

    ADS  Google Scholar 

  57. K P Santhosh and P V Subha Phys. Rev. C 95 064607 (2017).

    Article  ADS  Google Scholar 

  58. C Y Wong Phys. Rev. Lett. 31 766 (1973).

  59. D Glas and U Mosel Phys. Rev. C 10 2620 (1974).

    Article  ADS  Google Scholar 

  60. G Royer and J Mignen J. Phys. G: Nucl. Part. Phys. 18 1781 (1992).

    Article  ADS  Google Scholar 

  61. G Süssman Z. Phys. A 274 145 (1975).

  62. K J Le Couteur and D W Lang Nucl. Phys. 13 32 (1959).

  63. R Kaur, S Kaur, B B Singh, B S Sandhu and S K Patra Phys. Rev. C 101 034614 (2020).

    Google Scholar 

  64. A Kaur, Hemdeep, P Kaushal, B R Behera and R K Gupta Nucl. Phys. A 966 306 (2017).

    Article  ADS  Google Scholar 

  65. R K Gupta, M Balasubramaniam, R Kumar, N Singh, M Manhas and W Greiner J. Phys. G: Nucl. Part. Phys. 31 631 (2005).

    Article  ADS  Google Scholar 

  66. N Malhotra and R K Gupta Phys. Rev. C 31 1179 (1985).

    Article  ADS  Google Scholar 

  67. B V Carlson, L C Chamon and L R Gasques Phys. Rev. C 70 057602 (2004).

    Google Scholar 

  68. N Takigawa, T Rumin, and N Ihara Phys. Rev. C 61 044607 (2000).

    Google Scholar 

  69. A J. Baltz and B F Bayman Phys. Rev. C 26 1969 (1982).

  70. T D Thomas Phys. Rev. 116 703 (1959).

  71. J Huizenga and G Igo Nucl. Phys. 29 462 (1961).

    Article  Google Scholar 

  72. J Rasmussen and K Sugawara-Tanabe Nucl. Phys. A 171 496 (1971).

    Article  ADS  Google Scholar 

  73. D L Hill and J A Wheeler Phys. Rev. 89 1102 (1953).

    Article  ADS  Google Scholar 

  74. J Galin, D Guerreau, M Lefort and X Tarrago Phys. Rev. C 9 1018 (1974).

    Google Scholar 

  75. H H Gutbrod, W G Winn and M Blann  Nucl. Phys. A 213 267 (1973).

    Article  ADS  Google Scholar 

  76. R N Sahoo et al. Phys. Rev. C 99 024607 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author K.P.S would like to thank the Council of Scientific and Industrial Research, Government of India, for the financial support under the scheme “Emeritus Scientist, CSIR”, No. 21(1154)/22/EMR-II dated 20-05-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Santhosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Sobha, P.V. Decay of excited compound system 26−29Al* formed through the entrance channels 16,18O+ 10,11B. Indian J Phys 97, 4373–4381 (2023). https://doi.org/10.1007/s12648-023-02790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02790-0

Keywords

Navigation