Skip to main content
Log in

On the non-physical concavity of the quark potentials within the thick center vortex model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Lattice gauge theory (LGT) results denote to the confinement for the quark potential in various Yang–Mills theories. This property can also be obtained for the G(2) gauge theory. LGT calculations show that quark potential should have the downward concavity behavior. Confinement properties can be explained using the thick center vortex model. However using this model, an upward concavity is seen in some intervals of the quark potential. Considering the reason of this concavity, it is shown that the non-physical upward concavity (convexity) can be reduced by taking an arbitrary symmetric vortex flux in the space–time plane of the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. E.V. Shuryak, The QCD Vacuum, Hadrons and Super dense Matter. (Singapore:World scientific)(se. ed.) (2004)

  2. J. Greensite, An Introduction to the Confinement Problem. (ed.)( New York:Springer) (2011)

  3. Hirohumi Sawayanagi Progr. Theoret. Exp. Phys. 2021 2 (2021).

    Article  Google Scholar 

  4. Hirohumi Sawayanagi Progr. Theoret. Exp. Phys. 2019 3 (2019).

    Article  Google Scholar 

  5. Hirohumi Sawayanagi Progr. Theoret. Exp. Phys. 2018 9 (2018).

    Article  Google Scholar 

  6. M. Creutz ,Quarks, Gluons and Lattices. (Cambridge:Cambridge university press)(ed.) (1983)

  7. H. J. Rothe ,Lattice Gauge Theory An Introduction.,(Singapore:World Scientific Publishing)(ed. )(2005)

  8. I. Montvay, G. Munester, Quantum Fields on A Lattice.(Great Britain:Cambridge University Press) (ed.) (1994)

  9. K G Wilson Phys. Rev. D 10 2445 (1974).

    Article  ADS  Google Scholar 

  10. G. Mack, in Recent development in gauge Theories. (New York:Plenum)(ed.)G. ’t Hooft et al.(1980)

  11. G Mack Commun. Math. Phys. 65 91 (1979).

    Article  ADS  Google Scholar 

  12. G Mack Phys. Rev. 45 1378 (1980).

    ADS  Google Scholar 

  13. G Mack and V B Petkova Ann. Phys. (NY) 123 442 (1979).

    Article  ADS  Google Scholar 

  14. G Mack Phys. Rev. 45 1378 (1980).

    ADS  Google Scholar 

  15. G Mack and V B Petkova Ann. Phys. (NY) 125 117 (1980).

    Article  ADS  Google Scholar 

  16. G Mack and E Pietarinen Nucl. Phys. B 205 141 (1982).

    Article  ADS  Google Scholar 

  17. H B Nielsen and P Olesen Nucl. Phys. B 61 45 (1973).

    Article  ADS  Google Scholar 

  18. H B Nielson and P Olesen Nucl. Phys. B 160 380 (1979).

    Article  ADS  Google Scholar 

  19. J. Ambj \(\phi \) , P. Olesen,Nucl. Phys. B 170 60 (1980)

  20. J. Ambj \(\phi \) , P. Olesen,Nucl. Phys. B 170 250 (1980)

  21. J Cornwall Nucl. Phys. B 157 392 (1979).

    Article  ADS  Google Scholar 

  22. R Feynman Nucl. Phys. B 188 479 (1981).

    Article  ADS  Google Scholar 

  23. G. ’t Hooft,Nucl. Phys. B 138 1 (1978)

    Article  ADS  Google Scholar 

  24. S Mandelstam Phys. Rep. 23 245 (1976).

    Article  ADS  Google Scholar 

  25. G. ’t Hooft,Nucl. Phys. B 153 141 (1979)

    Article  ADS  Google Scholar 

  26. G.’t Hooft, Nucl. Phys. B190 455 (1981)

    Article  ADS  Google Scholar 

  27. G.’t Hooft,Physica Scripta.25 133 (1982)

    Article  ADS  Google Scholar 

  28. K Langfeld, H Reinhardt and O Tennert Physics Letters B 419 370 (1998).

    Article  Google Scholar 

  29. M Engelhardt, K Langfeld and H Reinhardt O. Tennert Phys. Rev. D 61 054504 (2000).

    Article  ADS  Google Scholar 

  30. P. O. Bowman,K. Langfeld, D.B. Leinweber, A. O’Cais, A. Sternbeck, L. von Smekal, A.G. Williams Phys. Rev. D 78 054509 (2008)

  31. K Langfeld and E-M Ilgenfritz Nucl. Phys. B 848 33 (2011).

    Article  ADS  Google Scholar 

  32. M Faber, J Greensite and S Olejnik Phys. Rev. D 57 2603 (1998).

    Article  ADS  Google Scholar 

  33. L Del Debbio, M Faber, J Giedt, J Greensite and S Olejník Phys. Rev. D 58 094501 (1998).

    Article  ADS  Google Scholar 

  34. M Faber, J Greensite and S Olejnik Phys. Rev. D 57 2603 (1998).

    Article  ADS  Google Scholar 

  35. J Greensite, K Langfeld, S Olejnik, H Reinhardt and T Tok Phys. Rev. D 75 034501 (2007).

    Article  ADS  Google Scholar 

  36. S Deldar JHEP 0101 013 (2001).

    Article  ADS  Google Scholar 

  37. S Deldar and S Rafibakhsh Euro. Phy. J C 42 319 (2005).

    Article  ADS  Google Scholar 

  38. S Deldar and S Rafibakhsh Phys. Rev. D 76 094508 (2007).

    Article  ADS  Google Scholar 

  39. G S Bali Phys. Rev. D 62 114503 (2000).

    Article  ADS  Google Scholar 

  40. S Deldar Phys. Rev. D 62 034509 (2000).

    Article  ADS  Google Scholar 

  41. S. Deldar, H. Lookzadeh, S. M. Hosseini Nejad,Phys. Rev. D 85 054501 (2012)

    Article  ADS  Google Scholar 

  42. S Deldar, H Lookzadeh, S M H Nejad and A I P Conf Proc. 1343 224 (2011).

    Google Scholar 

  43. H Lookzadeh and M Hossieni Iranian J. Phys. Res. 21 91 (2021).

    Google Scholar 

  44. H Lookzadeh Int. J. Modern Phys. A 36 2150109 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  45. Ryu Ikeda Kondo Kei-Ichi Progr. Theoret. Exp. Phys. 2021 10 (2021).

    Google Scholar 

  46. D R Junior, L E Oxman and G M Simões Universe 7 253 (2021).

    Article  ADS  Google Scholar 

  47. L Del Debbio, M Faber, J Greensite and S Olejník Phys. Rev. D 55 2298 (1997).

    Article  ADS  Google Scholar 

  48. Del Debbio, L. and Faber, M. and Greensite, J. and Olejnik, S. ,NATO Adv. Res. Workshop Theoret. Phys. New Develop. Quantum Field Theory 47 (1997)

  49. L E Oxman and H Reinhardt Euro. Phy. J C 78 177 (2018).

    Article  ADS  Google Scholar 

  50. D Altarawneh, M Engelhardt and R Höllwieser Phys. Rev. D 94 114506 (2016).

    Article  ADS  Google Scholar 

  51. D Altarawneh, R Höllwieser and M Engelhardt Phys. Rev. D 93 054007 (2016).

    Article  ADS  Google Scholar 

  52. S Deldar and S Rafibakhsh Phys. Rev. D 81 054501 (2010).

    Article  ADS  Google Scholar 

  53. C Bachas Phys. Rev. D 33 2723 (1986).

    Article  ADS  Google Scholar 

  54. C Bachas J. Phys.A: Math. Theoret. 40 9089 (2007).

    Article  ADS  Google Scholar 

  55. K Osterwalder and R Schrader Comm. Math. phys. 31 83 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  56. K Osterwalder and R Schrader Comm. Math. phys. 42 281 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  57. H. Lookzadeh, S. Deldar,Euro. Phy. J C 74 3093 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lookzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lookzadeh, H., Hosseini, M. On the non-physical concavity of the quark potentials within the thick center vortex model. Indian J Phys 97, 4439–4455 (2023). https://doi.org/10.1007/s12648-023-02770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02770-4

Keywords

Navigation