Skip to main content
Log in

Ablative Rayleigh–Taylor instability driven by time-varying acceleration

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, the asymptotic nonlinear behavior of the Rayleigh–Taylor hydrodynamic instability driven by time dependent variable accelerations of the form \(g(1-e^{-\frac{t}{T}})\) and \(g(1-e^{-\frac{t}{T}})(1+\cos \mu t)\) has been reported simultaneously. The nonlinear model based on potential flow theory has been extended to describe the effect of afore mentioned accelerations with vorticity generation inside the bubble. It is seen that the asymptotic growth rate and curvature of the tip of the bubble like interface tends to a finite saturation value and depends on the parameters T and \(\mu \). Also, an oscillatory behavior is observed for the acceleration \(g(1-e^{-\frac{t}{T}})(1+\cos \mu t)\). Such time-dependent accelerations are a representative of the flow conditions in several applications including Inertial Confinement Fusion, type la supernova and several Rayleigh–Taylor experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y Zhou Phys. Rep. 720-722 1 (2017)

  2. Y Zhou Phys. Rep. 723-725 1 (2017)

  3. P Ramaprabhu, V Karkhanis, R Banerjee, H Varshochi, M Khan and A G W Lawrie Phys. Rev. E 93 013118 (2016)

  4. Y Zhou et al. Phys. D 423 132838 (2021)

    Article  Google Scholar 

  5. C A Walsh Phys. Rev. E 105 025206 (2022)

  6. D Layzer Astrophys. J. 120 1 (1954)

  7. V N Goncharov Phys. Rev. Lett. 88 134502 (2002)

  8. P Ramaprabhu, G Dimonte, Y-N Young, A C Calder and B Fryxell Phys. Rev. E 74 066308 (2006)

  9. R Betti and J Sanz Phys. Rev. Lett. 97 205002 (2006)

    Article  ADS  Google Scholar 

  10. J Y Fu, H S Zhang, H B Cai, S P Zhu Phys. Plasmas 30 022701 (2023)

  11. R Banerjee, L Mandal, S Roy, M Khan and M R Gupta Phys. Plasmas 18 022109 (2011)

    Article  ADS  Google Scholar 

  12. R Banerjee Indian J. Phys. 94 927 (2020)

  13. S Kawata, Y Iizuka, Y Kodera, A I Ogoyski and T Kikuchi Nucl. Inst. Methods Phys. Res. A 606 152 (2009)

  14. A R Piriz, G R Prieto, I M Diaz, J J L Cela and N A Tahir Phys. Rev. E 82 026317 (2010)

    Article  ADS  Google Scholar 

  15. A R Piriz, S A Piriz and N A Tahir Phys. Plasmas 18 092705 (2011)

    Article  ADS  Google Scholar 

  16. A R Piriz, L Di Lucchio, G R Prieto and N A Tahir Phys. Plasmas 18 082705 (2011)

    Article  ADS  Google Scholar 

  17. K O Mikaelian Phys. Rev. E 89 053009 (2014)

  18. K O Mikaelian Phys. Rev. E 81 016325 (2010)

  19. D Aslangil, A G W Lawrie and A Banerjee Phys. Rev. E 105 065103 (2022)

    Article  ADS  Google Scholar 

  20. J D Lindl Inertial Confinement Fusion (USA: AIP Press) (1998)

  21. R Banerjee, L Mandal, M Khan and M R Gupta Phys. Plasmas 19 122105 (2012)

    Article  ADS  Google Scholar 

  22. R Banerjee, L Mandal, M Khan and M R Gupta Indian J. Phys. 87 9 929 (2013)

    Article  ADS  Google Scholar 

  23. M R Gupta, R Banerjee, L Mandal, R Bhar, H C Pant, M K Srivastava and M Khan Indian J. Phys. 86 6 471 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R. Ablative Rayleigh–Taylor instability driven by time-varying acceleration. Indian J Phys 97, 4365–4371 (2023). https://doi.org/10.1007/s12648-023-02755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02755-3

Keywords

Navigation