Skip to main content
Log in

Influence of electromagnetic field on Gaussian entropy and ground-state lifetime in impurity-center quantum dot with spherical Gaussian confining potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct a simple qubit using impurity-center quantum dots with a spherical Gaussian confining potential and analyze the rationality and superiority of this kind of qubit. Based on the Pekar-type variational method, Gaussian entropy and ground-state lifetime expressions under an electromagnetic field environment are derived. The numerical results show that the variation of Gaussian entropy of the system with the change of the quantum dot confinement range presents an inverted asymmetric "Gaussian distribution", and the time evolution of the Gaussian entropy presents the characteristics of plane wave propagation. The oscillation amplitude of Gaussian entropy decreases with increasing the electric field intensity but increases with increasing the magnetic induction intensity. However, the oscillation period of Gaussian entropy increases with increasing the electric field intensity but decreases with increasing the magnetic induction intensity. The ground-state lifetime of the system increases with increasing the well depth of the confining potential and the dielectric constant ratio of the quantum dots but decreases with increasing the confining potential range and electron–phonon coupling constant, respectively. The ground-state lifetime decreases with increasing temperature and electric field intensity, respectively, but increases with increasing the magnetic induction intensity. The conclusions of this paper can provide a reference for constructing the qubit using semiconductor quantum dots, optimizing information storage and transmission, and suppressing decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S S Li, X G Wu and H Z Zheng Physics 33 404(2004) (in Chinese)

    Google Scholar 

  2. M Schlosshauer Rev. Mod. Phys. 76 1267(2005)

    ADS  Google Scholar 

  3. S S Li et al. J. Appl. Phys90 6151 (2001)

    ADS  Google Scholar 

  4. J R Petta et al. Science 309 2180(2005)

    ADS  Google Scholar 

  5. Y Sun, Z H Ding and J L Xiao J. Electron. Mater. 46 439 (2017)

    ADS  Google Scholar 

  6. X F Bai, W Xin and Eerdunchaolu Int J. Mod. Phys. B 33 1950322 (2019)

    ADS  Google Scholar 

  7. W Qiu, J L Xiao and CY Cai J. Low Temp. Phys. 198 233(2020)

    ADS  Google Scholar 

  8. J L Xiao J. Low Temp. Phys202 196 (2021)

    ADS  Google Scholar 

  9. W Qiu et al. Iran J. Sci. Technol. A 44 1237 (2020)

    Google Scholar 

  10. C Rajamohan et al. J. Math. Chem. 44 743 (2008)

    MathSciNet  Google Scholar 

  11. J L Zhu, J H Zhao and J J Xiong J. Phys. Condense Matter 6 5097 (1994)

    ADS  Google Scholar 

  12. S Kang, J Li and T Y Shi J. Phys. B At. Mol. Opt. Phys. 39 6491 (2006)

    Google Scholar 

  13. J L Zhu and X Chen Phys. Rev. B 50 4497 (1994).

    ADS  Google Scholar 

  14. J W Yin et al. Acta Phys. Sin. 57 2695 (2008) (in Chinese)

    Google Scholar 

  15. W Xiao and J L Xiao Int. J. Theor. Phys. 55 2936 (2016)

    Google Scholar 

  16. A J Fotue et al. Eur. Phys. J. Plus. 131 205(2016)

    Google Scholar 

  17. Wuyunqimuge, C Han and Eerdunchaolu Acta Phys. Sin. 68 247803(2019)(in Chinese)

    Google Scholar 

  18. Y Sun and J L Xiao Eur. Phys. J. Plus135 592 (2020)

    Google Scholar 

  19. X F Bai, Y Zhang and Eerdunchaolu Indian J. Phys. 95 1783 (2021)

    Google Scholar 

  20. A Chatterjee J. Phys. A: Math. Gen. 18 2403(1985)

    ADS  MathSciNet  Google Scholar 

  21. A Chatterjee Phys. Rep. 186 249 (1990)

    ADS  Google Scholar 

  22. W Xie Physica B 403 2828 (2008)

    ADS  Google Scholar 

  23. W Xie Phys. Status Solidi (b) 245 101(2008)

    ADS  Google Scholar 

  24. Aalu Boda and A Chatterjee Physica E 45 36(2012)

    Google Scholar 

  25. Aalu Boda et al. AIP Conference Proceedings 1665 120035 (2015)

    Google Scholar 

  26. L H Shao et al. Phys. Rev. A 91 042120 (2015)

    ADS  Google Scholar 

  27. S Rana, P Parashar and M Lewenstein Phys. Rev. A 93 012110 (2016)

    Google Scholar 

  28. A Streltsov et al. Phys. Rev. Lett. 115 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  29. J J Ma et al. Phys. Rev. Lett. 116 160407(2016)

    ADS  Google Scholar 

  30. G Davide Phys. Rev. Lett. 113 170401(2014)

    Google Scholar 

  31. D P Pires, L C Céleri and D O Soares-Pinto Phys. Rev. A 91 042330(2015)

    Google Scholar 

  32. C E Shannon Bell Syst. Tech. J. 27 379 (1948)

    Google Scholar 

  33. C Tsallis J. Stat. Phys. 52 479 (1988)

    ADS  Google Scholar 

  34. A Rényi Math. Stat. Probab1 547(1961)

    Google Scholar 

  35. S Seba and M Hanmandlu Neurocomputing 120 214 (2013)

    Google Scholar 

  36. M Tiotsop et al. Superlattice. Microst. 103 70(2017)

    ADS  Google Scholar 

  37. M Habibinejad and A Ghanbari J. Low Temp. Phys. 203 369 (2021)

    ADS  Google Scholar 

  38. T D Lee, F.M Low and D Pines Phys. Rev. 90 297 (1953)

    ADS  Google Scholar 

  39. L D Landau and S I Pekar Zh. Eksp. Teor. Fiz18 419(1948)

    Google Scholar 

  40. T Yildirim and A Ercelebi J. Phys. Conden. Matt. 3 1271(1999)

    ADS  Google Scholar 

  41. S Susan and M Hanmandlu Neurocomputing 12 2140(2013)

    Google Scholar 

  42. Y F Yu et al. Chin. Phys. B 17 2236(2008)

    ADS  Google Scholar 

  43. G Withfield and M Engineer Phys. Rev. B 12 5472 (1975)

    ADS  Google Scholar 

  44. H J Li and J L Xiao J. Low Temp. Phys. 168 57 (2012)

    ADS  Google Scholar 

  45. Z X Li Indian J. Phys. 93 707(2019)

    ADS  Google Scholar 

  46. M Tiotsop, A J Fotue, H B Fotsin and L C Fai Opt Quant Electron 50 365 (2018)

    Google Scholar 

  47. R Khordad and H R R Sedehi Indian J. Phys. 91 825(2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the scientific research foundation of Hebei Normal University of Science &Technology

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, W. Influence of electromagnetic field on Gaussian entropy and ground-state lifetime in impurity-center quantum dot with spherical Gaussian confining potential. Indian J Phys 97, 3931–3940 (2023). https://doi.org/10.1007/s12648-023-02731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02731-x

Keywords

Navigation