Skip to main content
Log in

Memory-dependent derivatives effect on waves in a micropolar generalized thermoelastic plate including three-phase-lag model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, a new model has been framed for the mathematical investigation of micropolar generalized thermoelastic plate with three-phase-lag (TPL) model under memory-dependent derivatives (MDD). The new mathematical model has been simplified by using dimensionless quantities and solved by normal mode analysis. The dispersion equations for both symmetric and antisymmetric modes of propagation have been deduced for stress free boundaries of the plate. Phase velocity is plotted in the form of graphs for different modes of wave propagation with and without MDD response in the case of symmetric and antisymmetric modes involving TPL model. The amplitudes of displacements, micro-rotation and temperature distributions are obtained and presented graphically for the Lord and Shulman (LS), dual-phase-lag and TPL models. The time delay parameter and kernel function are selected arbitrarily according to the necessity of the application in numerical computation and MATLAB programmes have been developed for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M A Biot Journal of Applied Physics 27 240 (1956).

    MathSciNet  ADS  Google Scholar 

  2. V Peshkov Journal of Physics (Moscow) 8 3 (1944).

    Google Scholar 

  3. H W Lord and Y Shulman Journal of the Mechanics and Physics of Solids 15 299 (1967).

    ADS  Google Scholar 

  4. A E Green and P M Naghdi Mathematical and Physical Sciences 432 171 (1991).

    Google Scholar 

  5. A E Green and P M Naghdi Journal of Thermal Stresses 15 253 (1992).

    ADS  Google Scholar 

  6. A E Green and P M Naghdi Journal of Elasticity 31 189 (1993).

    Google Scholar 

  7. A E Green and K A Lindsay Journal of Elasticity 2 1 (1972).

    Google Scholar 

  8. D Y Tzou Journal of Heat Transfer 117 8 (1995).

    Google Scholar 

  9. S K Roychoudhuri Journal of Thermal Stresses 30 231 (2007).

    Google Scholar 

  10. I A Abbas and A N Abd-Alla Archive of Applied Mechanics 78 283 (2008).

    ADS  Google Scholar 

  11. M I A Othman and Kh Lotfy Multidiscipline Modeling in Materials and Structures 5 235 (2009).

    Google Scholar 

  12. I A Abbas Sadhana 36 411 (2011).

    Google Scholar 

  13. Kh Lotfy Chinese Physics B 21 014209 (2012).

    Google Scholar 

  14. M I A Othman and Kh Lotfy Mechanics of Materials 60 129 (2013).

    Google Scholar 

  15. R Kumar, V Chawla and I A Abbas Theoretical and Applied Mechanics 39 313 (2012).

    MathSciNet  ADS  Google Scholar 

  16. K Sharma, S Sharma and R R Bhargava Materials Physics and Mechanics 16 66 (2013).

    Google Scholar 

  17. S Sharma, K Sharma and R R Bhargava Materials Physics and Mechanics 17 93 (2013).

    ADS  Google Scholar 

  18. K Sharma and M Marin Applied Mathematics and Physics 75 121 (2013).

    Google Scholar 

  19. S Sharma, K Sharma and R R Bhargava The Journal of the African Mathematical Union 25 483 (2014).

    Google Scholar 

  20. A S El-Karamany and M A Ezzat European Journal of Mechanics 40 198 (2013).

    ADS  Google Scholar 

  21. S Shaw and B Muhkopadhyay European Journal of Computational Mechanics 24 64 (2015).

    Google Scholar 

  22. I A Abbas Mechanics Based Design of Structures and Machines 43 265 (2015).

    Google Scholar 

  23. I A Abbas, A N Abdalla, F S Alzahrani and M Spagnuolo Journal of Thermal Stresses 39 1367 (2016).

    Google Scholar 

  24. I A Abbas and R Kumar Steel and Composite Structures 20 1103 (2016).

    Google Scholar 

  25. Kh Lotfy, W Hassan and M E Gabr Results in physics 7 3918 (2017).

    ADS  Google Scholar 

  26. R Kumar, N Sharma and P Lata Mechanics of Advanced Materials and Structures 24 625 (2017).

    Google Scholar 

  27. R Kumar, A Miglani and R Rani Journal of Mechanics 34 779 (2018).

    Google Scholar 

  28. R Kumar, A K Vashisth and S Ghangas Materials Physics and Mechanics 35 126 (2018).

    Google Scholar 

  29. A Ghanmi and I A Abbas Journal of thermal biology 82 229 (2019).

    Google Scholar 

  30. A Hobiny and I A Abbas Results in Physics 15 102588 (2019).

    Google Scholar 

  31. Kh Lotfy, W Hassan, A A El-Bary and M A Kadry Results in Physics 16 102877 (2020).

    Google Scholar 

  32. A K Khamis, Kh Lotfy, A A El-Bary, A M S Mahdy and M H Ahmed Waves in Random and Complex Media 31 2499 (2021).

    ADS  Google Scholar 

  33. W Alhejaili, M A Nasr, Kh Lotfy and A El-Bary Optical and Quantum Electronics 54 833 (2022).

    Google Scholar 

  34. M Caputo Annals of Geophysics 19 383 (1966).

    Google Scholar 

  35. J L Wang and H F Li Computers & Mathematics with Applications 62 1562 (2011).

    MathSciNet  Google Scholar 

  36. Y J Yu, W Hu and X G Tian International Journal of Engineering Science 81 123 (2014).

    MathSciNet  Google Scholar 

  37. M A Ezzat, A S El-Karamany and A A El-Bary International Journal of Mechanical Sciences 89 470 (2014).

    Google Scholar 

  38. M A Ezzat, A S El-Karamany and A A El-Bary The European Physical Journal Plus 131 1 (2016).

    Google Scholar 

  39. R Tiwari and S Mukhopadhayay Mathematics and Mechanics of Solids 23 820 (2018).

    MathSciNet  Google Scholar 

  40. M I A Othman and S Mondal International Journal of Numerical Methods for Heat & Fluid Flow 30 1025 (2019).

    Google Scholar 

  41. A E Abouelregal Indian Journal of Physics 94 1949 (2020).

    ADS  Google Scholar 

  42. M A K Molla, N Mondal and S H Mallik Journal of Thermal Stresses 43 784 (2020).

    Google Scholar 

  43. J Bouslimi, S M Abo-Dahab, Kh Kh Lotfy, S Abdel-Khalek, E M Khalil and M Omri Thermal Science 24 285 (2020).

    Google Scholar 

  44. N Sarkar, S De, N Das and N Sarkar Journal of Heat Transfer 142 92101 (2020).

    Google Scholar 

  45. N Sarkar, S De and N Sarkar Waves in Random and Complex Media 31 731 (2021).

    ADS  Google Scholar 

  46. M I A Othman, E E M Eraki and E A A Ahmed Microsystem Technologies 28 1701 (2022).

    Google Scholar 

  47. G Mittal and V Kulkarni Partial Differential Equations in Applied Mathematics 5 1 (2022).

    Google Scholar 

  48. M Singh and S Kumari Journal of Ocean Engineering and Science (2022). https://doi.org/10.1016/j.joes.2022.02.003

    Article  Google Scholar 

  49. S Kumar and G Partap ZAMM-Journal of Applied Mathematics and Mechanics (2022). https://doi.org/10.1002/zamm.202200244

    Article  Google Scholar 

  50. S Deshwal, D Sheoran, S Thakaran and K K Kalkal Mechanics of Advanced Materials and Structures 29 1692 (2022).

    Google Scholar 

  51. Kh Lotfy and A A El-Bary Waves in Random and Complex Media (2022). https://doi.org/10.1080/17455030.2021.2025278

    Article  Google Scholar 

  52. K F Graff Wave motion in elastic solids New York: Dover Publications Inc. pp 431 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Partap, G. & Kumar, R. Memory-dependent derivatives effect on waves in a micropolar generalized thermoelastic plate including three-phase-lag model. Indian J Phys 97, 3589–3600 (2023). https://doi.org/10.1007/s12648-023-02705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02705-z

Keywords

Navigation