Skip to main content
Log in

Magnetic and thermodynamic properties of a ferrimagnetic nanowire with spin-1 core and spin-3/2 shell structure: a Monte Carlo simulation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the Monte Carlo simulation based on the heat bath algorithm is used to study the phase diagrams of a ferrimagnetic square nanowire with core/shell structure. We examined the ground-state phase diagrams of the square nanowire that were determined for various parameters. The resulting diagrams are very rich, and they also display all of the most stable configurations; furthermore, we have studied the effect of the crystal fields and exchange interactions on the critical and compensation behaviors (\(T_\text{c}\) and \(T_\text{comp}\)) of the system. The magnetization profiles (\(M_\text{T}\), \(M_\text{s}\) and \(M_\text{c}\)), susceptibility \(\chi _\text{T}\), internal energy \(E_\text{T}\) and specific heat \(C_\text{v}\) as a function of the temperature are investigated. Moreover, by varying the system parameters, the phase diagrams of the square nanowire are studied in detail. It is found that the system presents rich phase transitions such as the second-and first-order phase transitions, as well as well as the compensation and tricritical points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J E Wegrowe, D Kelly, Y Jaccard, Ph Guittienne and JPh Ansermet Europhys. Lett. 45 626 (1999)

    ADS  Google Scholar 

  2. A Fert and L Piraux J. Magn. Magn. Mater. 200 338 (1999)

    ADS  Google Scholar 

  3. L Q Mai, Y J Dong, L Xu and C H Han Nano Lett. 10 4273 (2010)

    ADS  Google Scholar 

  4. L Rigutti et al. Nano Lett. 10 2939 (2010)

    ADS  Google Scholar 

  5. R H Kodama J. Magn. Magn. Mater. 200 359 (1999)

    ADS  Google Scholar 

  6. G V Kurlyandskaya, M L Sanchez, B Hernando, V M Prida, P Gorria and M Tejedor Appl. Phys. Lett. 82 3053 (2003)

    ADS  Google Scholar 

  7. H Zeng, J Li, J P Liu, Z L Wang and S Sun Nature 420 395 (2002)

    ADS  Google Scholar 

  8. C Alexiou, A Schmidt, R Klein, P Hullin, C Bergemann and W Arnold J. Magn. Magn. Mater. 252 363 (2002)

    ADS  Google Scholar 

  9. H Wang, Y Zhou, E Wang and D Lin Chin. J. Phys. 39 85 (2001)

    Google Scholar 

  10. H Wang, Y Zhou, D Lin and C Wang Phys. Status Solidi B 232 254 (2002)

    ADS  Google Scholar 

  11. Ü Akinci J. Magn. Magn. Mater. 324 3951 (2012)

    ADS  Google Scholar 

  12. Y Yüksel, Ü Akinci and H Polat J. Phys. A 392 2347 (2013)

    Google Scholar 

  13. H Magoussi, A Zaim, M Boughrara and M Kerouad Superlattices Microstruct. 97 221 (2016)

    ADS  Google Scholar 

  14. T Kaneyoshi J. Phys. E 74 531 (2015)

    Google Scholar 

  15. R G B Mendes, F C Sá Barreto and J P Santos J. Magn. Magn. Mater. 471 369 (2019)

    ADS  Google Scholar 

  16. B Boughazi, M Boughrara and M Kerouad J. Magn. Magn. Mater. 363 33 (2014)

    ADS  Google Scholar 

  17. B Boughazi, M Boughrara and M Kerouad Phys. A: Stat. Mech. Appl. 465 635 (2017)

    Google Scholar 

  18. W Wang, Z Peng, S S Lin, Q Li, D Lv and S Yang Superlattices Microstruct. 113 178 (2018)

    ADS  Google Scholar 

  19. W Wang, D D Chen, D Lv, J P Liu, Q Li and Z Peng J. Phys. Chem. Solids 108 51 (2017)

    Google Scholar 

  20. Z D Vatansever J. Alloys Compd. 720 394 (2017)

    Google Scholar 

  21. V Leite and W Figueiredo Physica A 350 379 (2005)

    ADS  Google Scholar 

  22. T Kaneyoshi J. Magn. Magn. Mater. 321 3430 (2009)

    ADS  Google Scholar 

  23. D A Garanin and H Kachkachi Phys. Rev. Lett. 90 65504 (2003)

    ADS  Google Scholar 

  24. Y T Chong et al. Adv. Mater. 22 2435 (2010)

    ADS  Google Scholar 

  25. J P Xu, Z Z Zhang, B Ma and Q Y Jin J. Appl. Phys. 109 07B704 (2011)

    Google Scholar 

  26. F Xu et al. Solid State Commun. 151 169 (2011)

    ADS  Google Scholar 

  27. H W Wu, C J Tsai and L J Chen Appl. Phys. Lett. 90 043121 (2007)

    ADS  Google Scholar 

  28. T M Whitnet, J S Jiang and P C Searson Science 261 1316 (1993)

    ADS  Google Scholar 

  29. M Boughrara, M Kerouad and A Zaim J. Magn. Magn. Mater. 360 222 (2014)

    ADS  Google Scholar 

  30. A Feraoun, A Zaim and M Kerouad Physica B 445 74 (2014)

    ADS  Google Scholar 

  31. E Albayrak Phys. Lett. A 380 458 (2016)

    ADS  Google Scholar 

  32. N Zaim, A Zaim and M Kerouad J. Magn. Magn. Mater. 424 450 (2017)

    ADS  Google Scholar 

  33. N Zaim, A Zaim and M Kerouad J. Supercond. Nov. Magn. 32 3086 (2019)

    Google Scholar 

  34. Dan Lv, Feng Wang, Rui-ji Liu, Qiao Xue and San-xi Li J. Alloys Compd. 701 935 (2017)

    Google Scholar 

  35. A Feraoun and M Kerouad Appl. Phys. A 124 735 (2018)

    ADS  Google Scholar 

  36. B Nmaila, K Htoutou, L B Drissi and R AhlLaamara Solid State Commun. 336 114418 (2021)

    Google Scholar 

  37. K Htoutou and A Arbaoui Physica B 643 414095 (2022)

    Google Scholar 

  38. H K Mohamad, H A Yasser and O M Nabeel Solid State Commun. 308 113832 (2020)

    Google Scholar 

  39. B Boughazi, M Boughrara and M Kerouad J. Magn. Magn. Mater. 354 173 (2014)

    ADS  Google Scholar 

  40. M Ertas and E Kantar Phase Transit. 88 567 (2015)

    Google Scholar 

  41. M El Hamri, S Bouhou, I Essaoudi, A Ainane, R Ahuja and F Dujardin Physica B 507 60 (2017)

    Google Scholar 

  42. D P Landau and K Binder A Guide to Monte Carlo Simulation in Statistical Physics (Cambridge: Cambridge University Press) (2000)

    MATH  Google Scholar 

  43. W Wang, J-L Bi, R-J Liu, X Chen and J-P Liu Superlattices Microstruct. 98 447 (2016)

    Google Scholar 

  44. D Lv, W Jiang, Y Ma, Z Gao and F Wang Physica E 106 113 (2019)

    Google Scholar 

  45. N De La Espriella, C A Mercado and J C Madera J. Magn. Magn. Mater. 401 22 (2016)

    ADS  Google Scholar 

  46. B Deviren, M Bati and M Keskin Phys. Scr. 79 065006 (2009)

    ADS  Google Scholar 

  47. H Kerrai, N Zaim, M Kerouad and A Zaim Physica B 649 414448 (2023)

    Google Scholar 

  48. S Bouhou, I Essaoudi, A Ainane, M Saber, F Dujardin and J J de Miguel J. Magn. Magn. Mater. 324 2434 (2012)

    ADS  Google Scholar 

  49. T Kaneyoshi Phys. Lett. A 376 2352 (2012)

    ADS  Google Scholar 

  50. A Zaim, M Kerouad and M Boughrara J. Magn. Magn. Mater. 331 37 (2013)

    ADS  Google Scholar 

  51. R Masrour, A Jabar, A Benyoussef, M Hamedoun and L Bahmad Physica B 472 19 (2015)

    ADS  Google Scholar 

  52. A Zaim, M Kerouad and M Boughrara Solid State Commun. 158 81 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zaim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerrai, H., Zaim, N., Kerouad, M. et al. Magnetic and thermodynamic properties of a ferrimagnetic nanowire with spin-1 core and spin-3/2 shell structure: a Monte Carlo simulation. Indian J Phys 97, 3531–3544 (2023). https://doi.org/10.1007/s12648-023-02701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02701-3

Keywords

Navigation