Skip to main content
Log in

Reduction of thermal conductivity in GaN/InxAl1−xN/GaN Superlattice under the influence of interfacial electric field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A decrease in thermal conductivity (k) via electric field in superlattices (SL) is one of the recent attempts to get better thermoelectric efficiency. In this work, we report that interfacial electric (IFE) field of GaN/InxAl1−xN/GaN SL arising from crystal asymmetry and lattice mismatch strain can be used to decrease k of the SL. Theoretical results demonstrate that IFE field modifies acoustic phonon properties through elastic modulus and phonon velocity owing to inverse piezoelectric effect. High phonon velocity and size effect enhance interfacial phonon scattering, resulting into irregular change in specific heat at interfaces. This caused higher acoustic mismatch between layers and boosted thermal boundary resistance (TBR). Accordingly, k of SL is decreased, which can be controlled by IFE field engineering via indium composition and layer size. Room-temperature cross-plan thermal conductivities (kcp) in the presence (absence) of IFE field for GaN (12 nm)/InxAl1−xN(6 nm)/GaN SL (x = 0.1, 0.3 0.5, 0.7 and 0.9) are found to be 2.80 (3.46), 3.00 (3.42), 2.00 (4.10), 3.55 (3.98) and 3.99 (4.52) W/(mK), respectively, which demonstrates more than 20% decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data can be available on reasonable request from corresponding author.

References

  1. R Butte et al J. Phys. D Appl. Phys. 40 6328 (2007)

    Article  ADS  Google Scholar 

  2. D Jena et al Japn. J. Appl. Phys. 58 SC0801 (2019)

    Article  Google Scholar 

  3. E P Pokatilov, D L Nika and A A Balandin Appl. Phys. Lett. 89 113508 (2006)

    Article  ADS  Google Scholar 

  4. A Sztein, J Haberstroh and J E Bowers J. Appl. Phys. 113 183707 (2013)

    Article  ADS  Google Scholar 

  5. S Yamaguchi, R Izaki and N Kaiwa Phys. Lett. 84 5344 (2004)

    Google Scholar 

  6. A Sztein and J E Bowers J. Appl. Phys. 112 083716 (2012)

    Article  ADS  Google Scholar 

  7. A Filatova-Zalewska et al. Nanotechnology 32 075707 (2021)

    Article  ADS  Google Scholar 

  8. A Spindlberger, D Kysylychyn, L Thumfart, R Adhikari, A Rastelli and A Bonanni Appl. Phys. Lett. 118 062105 (2021)

    Article  ADS  Google Scholar 

  9. Y K Koh, Y Cao, D G Cahill and D Jena Adv. Funct. Mater. 19 1 (2009)

    Article  Google Scholar 

  10. Y Wang and C Liebig Phys. Lett. 97 083103 (2010)

    Google Scholar 

  11. R Cheaito et al Phys. Rev. Lett. 109 195901 (2012)

    Article  ADS  Google Scholar 

  12. R P Chen, N A Katcho, J P Feser, W Li, M Glaser, O G Schmidt and D G Cahill Rev. Lett. 111 115901 (2013)

    Article  ADS  Google Scholar 

  13. Q Zhang, Z Xiong and J Jiang J. Mater. Chem 21 12398 (2011)

    Article  Google Scholar 

  14. J Zhang, H Tong and G Liu Phys. Lett. 109 053706 (2011)

    Google Scholar 

  15. H Tong, J Zhang, G Liu and J A Herbsommer Phys. Lett. 97 112105 (2010)

    Google Scholar 

  16. C Guthy, C Y Nam and J E Fischer J. Appl. Phys. 103 064319 (2008)

    Article  ADS  Google Scholar 

  17. G Qin, Z Qin, S Yue, Q Yand and M Hu Nanoscale 9 7227 (2017)

    Article  Google Scholar 

  18. Y Quan, S Y Yueand and B Liao Appl. Phys. Lett. 118 162110 (2021)

    Article  ADS  Google Scholar 

  19. F Zhang et al. Nanoscale Res. Lett. 11 519 (2016)

    Article  ADS  Google Scholar 

  20. M Gladysiewicz, L Janicki, M Siekacz and G Cywinski Phys. Lett. 107 262107 (2015)

    Google Scholar 

  21. O Ambacher J. Phys. Condens. Matter 14 3399 (2002)

    Article  ADS  Google Scholar 

  22. S K Sahoo, B K Sahoo and S Sahoo J. Appl. Phys. 114 163501 (2013)

    Article  ADS  Google Scholar 

  23. J Zou, D Kotchetkov and A Balandin J. Appl. Phys. 92 2534 (2002)

    Article  ADS  Google Scholar 

  24. J Callaway Phys. Rev. 113 1046 (1959)

    Article  ADS  Google Scholar 

  25. S Mei and I Knezevic J Appl. Phys. 118 175101 (2015)

    Article  ADS  Google Scholar 

  26. F X Alverez, J Alvarez-quintana and D Jou J. Appl. Phys. 107 084303 (2010)

    Article  ADS  Google Scholar 

  27. M V Simkin and G D Mahan Phys. Rev. Lett. 84 927 (2000)

    Article  ADS  Google Scholar 

  28. S S Sahu and B K Sahoo Thin Solid Films 684 59 (2019)

    Article  ADS  Google Scholar 

  29. J W Pomeroy, M Kuball, H Lu and W J Schaff Phys. Lett. 86 223501 (2005)

    Google Scholar 

  30. N Domenech-Amador, R Cusco and L Artus Rev. B 83 245203 (2011)

    Article  Google Scholar 

  31. C A Polanco and L Lindsay Phys. Rev. B 99 075202 (2019)

    Article  ADS  Google Scholar 

  32. T L Bougher and L Yates Eng. 20 22 (2016)

    Google Scholar 

  33. S S Sahu and B K Sahoo Eur. Phys. J. Plus 136 1160 (2021)

    Article  Google Scholar 

  34. S S Sahu and B K Sahoo J. Alloys and Comp. 898 162927 (2022)

    Article  Google Scholar 

  35. W Kim, J Zide, A Gossard, D Klenov and S Stemmer Rev. Lett. 96 045901 (2006)

    Article  ADS  Google Scholar 

  36. H K Lee and J S Yu Appl Phys. B 106 619 (2012)

    Google Scholar 

  37. J Ju et al. AIP Adv. 6 045216 (2016)

    Article  ADS  Google Scholar 

  38. L Thumfart, J Carrete, B Vermeersch, N Ye, T Truglas, J Feser and H Groiss J. Phys. D Appl. Phys. 51 014001 (2018)

    Article  ADS  Google Scholar 

  39. M S Vitiello Phys. Lett. 90 431 (2007)

    Google Scholar 

  40. M N Luckyanova et al. Nano Lett. 13 3973 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (JM) acknowledges with thanks to NIT Raipur, Govt. of India, for an award of fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Equally contributed by authors.

Corresponding author

Correspondence to Jay Kumar Mehra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, J.K., Sahoo, B.K. Reduction of thermal conductivity in GaN/InxAl1−xN/GaN Superlattice under the influence of interfacial electric field. Indian J Phys 97, 3467–3481 (2023). https://doi.org/10.1007/s12648-023-02680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02680-5

Keywords

Navigation