Skip to main content
Log in

A photonic crystal based on porous silicon as a chemical sensor for the detection of methanol compound

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A one-dimensional binary photonic crystal (BPC) with an inverted symmetry is presented as a methanol sensor. The BPC is assumed to have the structure (Si/SiO2)N (SiO2/Si)N, where N is the number of periods. The silicon herein used is porous and the measurand is assumed to be infiltrated into the porous network of the silicon material and the air inside the void space of the ensemble is replaced by a chemical compound with a higher refractive index. This leads to an enhancement in the effective refractive index of the structure and as a result, a redshift of the Bragg peak is observed. The transmission spectra tuning can accurately determine the type of chemical compound that is present in the silicon pores. The structure, as a chemical sensor for the detection of methanol, is investigated with variable porosity, layer liquid fraction, porous layer thickness, and angle of incidence. These parameters play a key role in the performance of the proposed device. A sensitivity of 1186.1 nm/RIU has been reached with the current sensor which is extremely high. This device can become a milestone for the detection of liquids and gases for industrial or commercial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N Hidalgo, M E Calvo, S Colodrero and H Míguez IEEE Sens. J. 10 1206 (2010)

    ADS  Google Scholar 

  2. C F Blanford, H Yan, R C Schroden, M Al-Daous and A Stein Adv. Mater. 13 401 (2001)

    Google Scholar 

  3. Y J Lee and P V Braun Adv. Mater. 15 563 (2003)

    Google Scholar 

  4. S Fang, H Wang, J Yang, S Lu, B Yu, J Wang and C Zhao J. Phys. Chem. Solids 89 1 (2016)

    ADS  Google Scholar 

  5. P Jiang, J F Bertone, K S Hwang and V L Colvin Chem. Mater. 11 2132 (1999)

    Google Scholar 

  6. A Stein Microporous Mesoporous Mater. 44 227 (2001)

    Google Scholar 

  7. K Lee and S A Asher J. Am. Chem. Soc. 122 9534 (2000)

    Google Scholar 

  8. Z Wu, D Lee, M F Rubner and R E Cohen Small 3 1445 (2007)

    Google Scholar 

  9. S Y Choi, M Mamak, G Von Freymann, N Chopra and G A Ozin Nano Lett. 6 2456 (2006)

    ADS  Google Scholar 

  10. Y G Ju Opt. Quantum Electron. 52 1 (2020)

    Google Scholar 

  11. P Mahmoudi and M Solaimani Indian J. Phys. 96 565 (2022)

    ADS  Google Scholar 

  12. H Chen and H Seif-Darghahi Opt. Quantum Electron. 54 1 (2022)

    Google Scholar 

  13. P Sarkar, A Panda and G Palai Indian J. Phys. 93 1495 (2019)

    ADS  Google Scholar 

  14. A H M Almawgani, M G Daher, S A Taya, I Colak, S K Patel and O M Ramahi Opt. Quantum Electron. 54 1 (2022)

    Google Scholar 

  15. S A Taya and M G Daher Int. J. Smart Grid 6 29 (2022)

    Google Scholar 

  16. A H M Almawgani, S A Taya, M A Abutailkh, N Doghmosh and I Colak Cryogenics 125 103498 (2022)

    Google Scholar 

  17. A Bhargava and B Suthar J. Ovonic Res. 5 187 (2009)

    Google Scholar 

  18. A H M Almawgani, D N Alhamss, S A Taya, I Colak, A Sharma, A R H Alhawari and S K Patel Phys. Fluids 34 082020 (2022)

    Google Scholar 

  19. S A Taya, M A Abutailkh, I Colak and O M Ramahi Opt. Quantum Electron. 53 1 (2021)

    Google Scholar 

  20. H Rahimi Silicon 12 501 (2020)

    Google Scholar 

  21. A Nourmohammadi and M Nikoufard Silicon 12 193 (2020)

    Google Scholar 

  22. F Chavesa, H Posada, D Vigneswaran and M S Mani Rajan Optik 185 930 (2019)

    ADS  Google Scholar 

  23. S A Mitu, K Ahmed, F A Al Zahrani, A Grover, M S Mani Rajan and M A Moni Opt. Lasers Eng. 140 106551 (2021)

    Google Scholar 

  24. N R Ramanujam, S K Patel, N M Reddy, S A Taya, D Vigneswaran and M S Mani Rajan Optik 219 165097 (2020)

    ADS  Google Scholar 

  25. S Guo, C Hu and H Zhang J. Opt. Soc. Am. B 37 2678 (2020)

    ADS  Google Scholar 

  26. B Wan, H Zhang and P Wang Opt. Lett. 46 1934 (2021)

    ADS  Google Scholar 

  27. B F Wan, Z W Zhou, Y Xu and H Zhang IEEE Sensors J. 21 331 (2021)

    ADS  Google Scholar 

  28. Y Ma, H Zhang, H Zhang, T Liu and W Li Appl. Opt. 57 8119 (2018)

    ADS  Google Scholar 

  29. S A Taya, O M Ramahi, M A Abutailkh, N Doghmosh and Z M Nassar J. Phys. 96 2151 (2022)

    Google Scholar 

  30. N Doghmosh, S A Taya, Z M Nassar and I Colak Indian J. Phys. 97 225 (2023)

    ADS  Google Scholar 

  31. L Pavesi, C Mazzoleni, R Guardini, M Cazzanelli, V Pellegrini and A Tredicucci Nuovo Cim. D 18 1213 (1996)

    ADS  Google Scholar 

  32. I M White and X Fan Opt. Express 16 1020 (2008)

    ADS  Google Scholar 

  33. A M Ahmed, H A Elsayed and A Mehaney Plasmonics 16 547 (2021)

    Google Scholar 

  34. M García-Mardones, P Cea, M C López and C Lafuente Thermochim. Acta 572 39 (2013)

    Google Scholar 

  35. X Xu, B Peng, D Li, J Zhang, L M Wong, Q Zhang, Sh Wang and Q Xiong ACS 11 3232 (2011)

    Google Scholar 

  36. K Zang, D Zhang, Y Huo, X Chen, C Y Lu, E T Fei, Th I Kamins and X Feng Phys. Lett. 106 101111 (2015)

    Google Scholar 

  37. S Ghosh and B M A Rahman IEEE Sens. J. 23 5200108 (2016)

    Google Scholar 

  38. Y S Lin Mater. Lett. 195 55 (2017)

    Google Scholar 

  39. H Muthuganesan, Y Kar, C V Kruijsdijk and S K Selvaraja IEEE Sens. J. 20 5970 (2020)

    ADS  Google Scholar 

  40. Y Singh, A Sadhu and S K Raghuwanshi IEEE Sens. J. 20 8528 (2020)

    ADS  Google Scholar 

  41. S A Taya and A Sharma Chem. Phys. 279 125772 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/12/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almawgani, A.H.M., Taya, S.A., Doghmosh, N. et al. A photonic crystal based on porous silicon as a chemical sensor for the detection of methanol compound. Indian J Phys 97, 3643–3652 (2023). https://doi.org/10.1007/s12648-023-02665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02665-4

Keywords

Navigation