Skip to main content
Log in

A unified realization of the modified Einstein equation approach in organic semiconductors: theoretical interpretation and experimental validation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An analytical approach has been introduced to determine the applicability of Einstein equation in organic semiconductors. In our proposed theoretical work, modified Einstein equation is implemented directly in Mott–Gurney equation to obtain permittivity of the semiconductor. Our proposed theoretical outcome has also been validated by introducing it in the current–voltage relation plot obtained in GPVDM simulation. Simulation result shows high consistency with our proposed theoretical work. Experiments have also been performed on turmeric dye-based natural organic semiconductor at 303–338 K temperature range on the basis of proposed theoretical aspect. High consistency has been obtained from the outcome of performed experiments. Material permittivity-related other parameters have been estimated from repeated experiment at aforementioned temperature range which indicates the reliability of our proposed applicability of modified Einstein equation and helps to give a fruitful explanation of current conduction into organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kawano K., Sakai J., M. Yahiro M., C. Adachi C., Sol. Energy Mater. Sol. Cells. 93 514 (2009)

  2. A Haldar, S Maity and N B Manik Ionics. 14 427 (2008)

    Article  Google Scholar 

  3. J Jyegal Appl. Sci. 7 1 (2017)

    Article  Google Scholar 

  4. S V Novikov, D H Dunlap, V M Kenkre, P E Parris and A V Vannikov Phys. Rev. Lett. 81 4472 (1998)

    Article  ADS  Google Scholar 

  5. Y Roichman and N Tessler Phys. Rev. Lett. 80 1948 (2002)

    Google Scholar 

  6. P M Borsenberger J. Chem. Phys. 95 1258 (1991)

    Article  ADS  Google Scholar 

  7. Baravanovskii S. D., Faber T., Hensel F., Thomas P., Adriaenssens G. J., Noncrys. J., Sol. 198214 (1996)

  8. Harada K., Werner A.G., Pfeiffer M., Bloom C. J., Elliott C., M., Leo M. K., Organic Phys. Rev. Lett. 94 036601 (2005)

  9. K Chakraborty, A Das, R Mandal and D K Mandal Tans. Tianjin. Univ. 26 4 265 (2020)

    Article  Google Scholar 

  10. Y Q Peng, J H Yang, F P Lu, Q S Yang, H W Xing, X S Li and C A Song Appl. Phys. A. 86 225 (2007)

    Article  ADS  Google Scholar 

  11. G A H Wetzalaer and P W M Blom NPG Asia. Mat. 6 1 (2014)

    Google Scholar 

  12. K Chakraborty, A Das, R Mandal and D K Mandal Bull. Mat. Sc. 44 1 (2021)

    Article  Google Scholar 

  13. L Sims, U Hörmann, R Hanfland, R MacKenzie, F Kogler, R Steim, W Brütting and P Schilinsky Org Elect. 15 2862 (2014)

    Article  Google Scholar 

  14. Chakraborty K., Malakar S., Mandal D. K., Mondal R., Maiti A. K., Int. J. Adv. Sci. Engg. 642 (2019)

  15. Md K Hossain et al Res. Phys. 7 1516 (2017)

    Google Scholar 

  16. A Dakhel and F Z Henan Mat Sc and Engg 178 1062 (2013)

    Article  Google Scholar 

  17. M K Hossain et al Mat Sc-Pol. 36 93 (2018)

    Google Scholar 

  18. W Shockley and J Bel Tech 28 435 (1949)

    Google Scholar 

  19. K P Ghatak, A K Chowdhury, S Ghosh and A N Chakravarti Sol. Surfaces. 23 241 (1980)

    Google Scholar 

  20. Y Q Peng, J Yang and F P Lu Generalization of Einstein relation for doped organic semiconductors 83 305 (2006)

    Google Scholar 

  21. A Maurano et al. Adv. Mater. 22 4987 (2010)

  22. G A H Wetzelaer, L J A Koster and P W M Blom Phys. Rev. B. 107 066605 (2011)

    Google Scholar 

  23. A Armin, D M Stoltzfus, J E Donaghey, A J Clulow, R Nagiri, P L Burn, I R Gentle and P Meredith J Mat. Chem C. 5 3736 (2017)

    Article  Google Scholar 

  24. P de Bruyn et al Phys. Rev. Lett. 111 186801 (2013)

    Article  ADS  Google Scholar 

  25. G A H Wetzelaer AIP Adv. 8 035320 (2018)

    Article  ADS  Google Scholar 

  26. S Chakraborty and N B Manik Phys. B. 481 209 (2016)

    Article  ADS  Google Scholar 

  27. K Chakraborty, S Chakraborty and N B Manik J. Semiconduct. 39 094001 (2018)

    Article  ADS  Google Scholar 

  28. V I Arkhipov and P Heremans Appl. Phys. Lett. 82 3245 (2003)

    Article  ADS  Google Scholar 

  29. S N Hood and I Kassal J. Phys. Chem. Lett. 7 22 4495 (2016)

    Article  Google Scholar 

  30. N Felekidis, A Melianas and M Kermerink Phys. Rev. B. 94 5205 (2016)

    Article  ADS  Google Scholar 

  31. F L E Jakobsson, X Crispin and M Berggren Org. Elect. 10 95 (2009)

    Article  Google Scholar 

  32. M Pope and C E Swenberg Electronic processes in organic crystals and polymers (Oxford University Press) (1999)

    Google Scholar 

  33. K Chakraborty, A Das, R Mandal and D K Mandal Sol. Comm. 323 1 (2021)

    Google Scholar 

  34. R MacKenzie, T Kirchartz, G Dibb and J Nelson J. Phys. Chem. C 115 9806 (2011)

    Article  Google Scholar 

  35. D Ritter, E Zeldov and K Weiser Phys Rev B. 38 8296 (1988)

    Article  ADS  Google Scholar 

  36. L V Devoise, M Diez-Pascul Ana and R P Capilla Material. 15 1 (2022)

    Google Scholar 

  37. L Zhang, L Wang, W J Wu and M Chan IEEE Trans. Elect. Dev. 66 139 (2019)

    Article  ADS  Google Scholar 

  38. S R Forrest Nanophoton. 10 31 (2021)

    Article  Google Scholar 

  39. M A Ezzat and Alaa A El-Bary J. Electromagnetic Waves. Appl 28 1985 (2014)

    Article  ADS  Google Scholar 

  40. M A Ezzat and Alaa A El-Bary Int. J. Eng. Sci. 47 618 (2009)

    Article  Google Scholar 

  41. Yasein M, Mabrouk N, Lotfy Kh, El-Bary AA, Res. Phys, 15 (2019) 102766(1–6)

  42. K Khamis Alaa, K Lotfy, A A El-Bary, M S Mahdy Amr and M H Ahmed Waves. Random. Complex Med. 31 2499 (2021)

    Article  ADS  Google Scholar 

  43. Mahdy AMS, Lotfy K, Ismail EA, El-Bary AA, Ahmed M, El-Dahdouh AA, Res. Phys, 17 (2020) 103174 (1–11)

Download references

Acknowledgements

Authors are thankful to School of Energy Studies, Jadavpur University, for their support to perform the experiments, and they are grateful to University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kushal Chakraborty.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 556 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Mandal, R., Das, A. et al. A unified realization of the modified Einstein equation approach in organic semiconductors: theoretical interpretation and experimental validation. Indian J Phys 97, 3033–3040 (2023). https://doi.org/10.1007/s12648-023-02645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02645-8

Keywords

Navigation