Skip to main content
Log in

Impact of helicoidal interactions and weak damping on the breathing modes of Joyeux-Buyukdagli model of DNA

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The damped nonlinear Schr\(\ddot{o}\)dinger equation is derived from the helicoidal Joyeux and Buyukdagli model of DNA, in which the particles of the surrounding solvent medium induces a weak viscosity. This is achieved by using a perturbation technique known as the multiple scale expansion in the semi-discrete approximation. The solitary wave solution of the amplitude equation depict breathing pulses, known for the initiation of the DNA transcription and replication processes. An increase in damping is shown to rapidly switch the exponential growth rate of the weak continuous wave perturbations to oscillatory behavior, within the frame work of modulational instability analysis. This is physically depicted as a decrease in the amplitude and corresponding broadening of the breathing modes during propagation along the DNA chain. Numerical simulations shows that the breathing pulses are quite robust entities, because they emerge unchanged after collision. It equally underscores the qualitative and quantitative influence of the helicoidal and damping parameters, on the biological processes inherent in the DNA dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M Joyeux and S Buyukdagli Phys. Rev. E 72 051902 (2005)

    Article  ADS  Google Scholar 

  2. M Joyeux and S Buyukdagli Phys. Rev. E 77 031903 (2008)

    Article  ADS  Google Scholar 

  3. M Joyeux and A-M Florescu J. Phys.: Condens. Matter 21 034101 (2009)

    Google Scholar 

  4. C L Gninzanlong, F T Ndjomatchoua and C Tchawoua Chaos 28 043105 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. P B Ndjoko, J M Bilbault, S Binczak and T C Kofané Phys. Rev. E 85 011916 (2012)

    Article  ADS  Google Scholar 

  6. Y Ying-Bo, W Xiao-Yun and T Bing J. Biol. Phys. 42 213 (2016)

    Article  Google Scholar 

  7. S W Englander, N R Kallenbach, A J Heeger, J A Krumhansl and S Litwin Proc. Natl. Acad. Sci. U.S.A. 77 7222 (1980)

    Article  ADS  Google Scholar 

  8. L Yakushevich Nonlinear Physics of DNA, Wiley Series in Nonlinear Sciences (Weinheim: Wiley) (2004)

    Book  Google Scholar 

  9. T Dauxois, M Peyrard and A R Bishop Phys. Rev. E 47 684 (1993)

    Article  ADS  Google Scholar 

  10. T Dauxois and M Peyrard Phys. Rev. E 51 4027 (1995)

    Article  ADS  Google Scholar 

  11. M Peyrard Nonlinearity 17, R1–R40 (2004). https://doi.org/10.1088/0951-7715/17/2/R01

    Article  ADS  Google Scholar 

  12. J B Okaly, A Mvogo, C B Tabi, H P Ekobena Fouda and T C Kofané Phys. Rev. E 102 062402 (2020)

    Article  ADS  Google Scholar 

  13. M Daniel and V Vasumathi Phys. Rev. E 79 012901 (2009)

    Article  ADS  Google Scholar 

  14. C B Tabi, A Mohamadou and T C Kofané Chaos 19 043101 (2009)

    Article  ADS  Google Scholar 

  15. M Barbi, S Cocco, M Peyrard and S Ruffo J. Biol. Phys. 24 97 (1999)

    Article  Google Scholar 

  16. K I Nakamura, H Matano, D Hilhorst and R Schätzle J. Stat. Phys. 95 1165 (1999)

    Article  ADS  Google Scholar 

  17. C Sophocleous Physica A 345 457 (2005)

    Article  ADS  Google Scholar 

  18. V Vasumathi and M Daniel Phys. Rev. E 80 061904 (2009)

    Article  ADS  Google Scholar 

  19. M Peyrard and I Daumont Europhys. Lett. 59 834 (2002)

    Article  ADS  Google Scholar 

  20. L V Yakushevich, A V Savin and L I Manevitch Phys. Rev. E 66 016614 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. J B Okaly, F-II Ndzana, R L Woulaché and T C Kofané Eur. Phys. J. Plus 134 598 (2019)

    Article  Google Scholar 

  22. N O Nfor, S B Yamgoué and F M Moukam Kakmeni Chin Phys. B 30 020502 (2021)

    Google Scholar 

  23. N O Nfor, P G Ghomsi and F M Moukam Kakmeni Phys. Rev. E 97 022214 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. N O Nfor and M T Mokoli J. Mod. Phys. 7 1166 (2016)

    Article  Google Scholar 

  25. F-II Ndzana and A Mohamadou Chaos 29 013116 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. N O Nfor and M E Jaja J. Opt. 24 084002 (2022)

    Article  ADS  Google Scholar 

  27. D Anderson and M Lisak OPTICS LETTERS 9 468 (1984)

    Article  ADS  Google Scholar 

  28. G B Whitham J. Fluid Mech. 22 273 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  29. A Hasegawa Phys. Fluids 15 870 (1972)

    Article  ADS  Google Scholar 

  30. G F Achu, S E Mkam, F M Moukam Kakmeni and C Tchawoua Phys. Rev. E 98 022216 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. N O Nfor, P G Ghomsi and F M Moukam Kakmeni Chin Phys. B 32 020504 (2023)

    Google Scholar 

  32. S Zdravković and M V Satarić Phys. Lett. A 373 2739 (2009)

    Article  ADS  Google Scholar 

  33. A Husin and H Dede Chaos, Solitons and Fractals 45 1231 (2012)

    Article  MathSciNet  Google Scholar 

  34. N O Nfor J. Mod. Phys. 12 1843 (2021)

    Article  Google Scholar 

  35. S B Smith, Y Cui and C Bustamante Science, New Series 271 795 (1996)

    Google Scholar 

  36. I Daumont and M Peyrard Chaos 13 624 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. M Peyrard and I Daumont Europhys. Lett. 59 834 (2002)

    Article  ADS  Google Scholar 

  38. F M Moukam Kakmeni, E M Inack and E M Yamakou Phys. Rev. E 89 052919 (2014)

    Article  ADS  Google Scholar 

  39. J B Okaly, F-II Ndzana, R L Woulaché, C B Tabi and T C Kofané Chaos 29 093103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. B Tang and K Deng Nonl. Dyn. 88 2417 (2017)

    Article  Google Scholar 

  41. T B Benjamin and J E Feir Fluid Mech. 27 417 (1967)

    Article  ADS  Google Scholar 

  42. E Kengne, A Lakhssassi and W M Liu Phys. Rev. E 91 062915 (2015)

    Article  ADS  Google Scholar 

  43. S W Englander, N R Kallenbach, A J Heeger, J A Krumhansl and S Litwin Prc. Natl. Acad. Sci 77 7222 (1980)

    Article  ADS  Google Scholar 

  44. D Hennig and G P Tsironis Phys. Rep. 307 333 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  45. L V Yakushevich Nonlinear Physics of DNA 2nd edn (Chichester: Wiley) (2004)

  46. Z Rapti, A Smerzi, K \(\phi \) Rasmussen, A R Bishop, C H Choi and A Usheva Phys. Rev. E73 051902 (2006)

  47. C B Tabi, A Mohamadou and T C Kofané Eur. Phys. J. D 50 307 (2008)

    Article  ADS  Google Scholar 

  48. M Gleiser and R M Haas Phys. Rev. D 54 1626 (1996)

    Article  ADS  Google Scholar 

  49. R M Haas Phys. Rev. D 57 7422 (1998)

    Article  ADS  Google Scholar 

  50. A Sulaiman, F P Zenb, H Alatasc and L T Handoko Physica D 241 1640 (2012)

    Article  ADS  Google Scholar 

  51. C L Gninzanlong, F T Ndjomatchoua and C Tchawoua Phys. Rev. E 99 052210 (2019)

    Article  ADS  Google Scholar 

  52. M Daniel and V Vasumathi Phys. Lett. A 372 5144 (2008)

    Article  ADS  Google Scholar 

  53. D Chevizovich, D Michieletto, A Mvogo, F Zakiryanov and S Zdravković R. Soc. Open Sci. 7 200774 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the enriching discussions on the dynamics of DNA molecular chain, with students of Physics department, HTTC Bambili.

Funding

The authors acknowledge the grants and support of the Cameroon Ministry of Higher Education, through the initiative for the modernization of research in Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nkeh Oma Nfor.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by the Scientific Committee of the Department of Physics, Higher Teacher Training College Bambili, The University of Bamenda, P. O. Box 39, Bambili-Cameroon.

Informed concerned

No informed concerned because experimental data were used, with the sources properly cited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nfor, N.O., Arnaud, D. & Yamgoué, S.B. Impact of helicoidal interactions and weak damping on the breathing modes of Joyeux-Buyukdagli model of DNA. Indian J Phys 97, 2339–2353 (2023). https://doi.org/10.1007/s12648-023-02610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02610-5

Keywords

Navigation