Skip to main content
Log in

Photoionization study of K III and Br IV ions in the framework of the modified orbital atomic theory

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Resonance energies and quantum defects are reported for several Rydberg series for K2+ and Br3+. For K III ions, the [3s23p4 (1D2)]nd (2P, 2D) and [3s3p5 (3P°2,0,1)]np, [3s23p4 (1S0)]nd (2D5/2,3/2) Rydberg series originating from the 3s23p5 (2P°1/2) metastable and 3s23p5 (2P°3/2) ground states are considered. For Br IV ions, the study is focused on the 4s24p (1D2, 3P2, 3P1)nd series originating from the 4s24p2 (1D2,3P2,3P1) states along with the 4s4p2 (3P1)np and 4s4p2 (1D2)np states originating from the 4s24p2 (3P1, 1D2) states. Calculations are performed in the framework of the modified atomic orbital theory (MAOT). Precise data are tabulated up to high excited stated n = 40. The results presented in this paper are in excellent agreement with the synchrotron radiation measurements of Alna'Washi et al. (Phys Rev A 90:023417, 2014) on K2+ and of Macaluso et al. (J Phys B At Mol Opt Phys 52:145002, 2019) on Br3+. These excellent agreements between theory and experiments indicate that the MAOT formalism can be used to report accurate high-lying excited Rydberg series of atomic species for the diagnostic and the modeling of astrophysical or laboratory plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. D R Flower in Atoms in Astrophysics (New York: Plenum Press), pp. 289–323 (1983).

  2. I Hofmann Laser Part. Beams 8 527 (1990).

    Article  ADS  Google Scholar 

  3. R W P McWhirter and H P Summers in Applied Atomic Collision Physics: Volume 2 (New York: Academic Press), pp. 55–111 (1983).

  4. D S Kim and S T Mason J. Phys. B: At. Mol. Opt. Phys. 43 155205 (2010).

    Article  ADS  Google Scholar 

  5. E Keles et al. Mon. Not. R. Astron. Soc.: Lett. 489 L37 (2019).

    Article  ADS  Google Scholar 

  6. N F Allard, F Spiegelman, T Leininger and P Molliere Astron. Astrophys. 628 A120 (2019).

    Article  ADS  Google Scholar 

  7. M E Weller et al. ApJ 881 92 (2019).

    Article  ADS  Google Scholar 

  8. I M Savukov Phys. Rev. A 76 032710 (2007).

    Article  ADS  Google Scholar 

  9. N Amin, S Mahmood, S U Haq, M A Kalyar, M Rafiq, M A Baig Quant. Spectrosc. Radiat. Transf. 109 863 (2008).

    Article  ADS  Google Scholar 

  10. O Zatsarinny and S S Tayal Phys. Rev. A 81 043423 (2010).

    Article  ADS  Google Scholar 

  11. A Yar, R Ali, M A Baig Phys. Rev. A 87 045401 (2013).

    Article  ADS  Google Scholar 

  12. A Yar, R Ali, M A Baig Phys. Rev. A 88 033405 (2013).

    Article  ADS  Google Scholar 

  13. M A Kalyar, A Yar, J Iqbal, R Ali, M A Baig Opt. Laser Technol. 77 72 (2016).

    Article  ADS  Google Scholar 

  14. S Noll, J M C Plane, W Feng, B Proxauf, S Kimeswenger, W Kausch J. Geophys. Res. Atmos. 124 6612 (2019).

    Article  ADS  Google Scholar 

  15. K J Nygaard, R J Corbin, J D Jones Phys. Rev. A 17 1543 (1978).

    Article  ADS  Google Scholar 

  16. G A Alna’Washi et al. Phys. Rev. A 90 023417 (2014).

    Article  ADS  Google Scholar 

  17. B Sharpee et al.Astrophys. J. 659 1265 (2007).

    Article  ADS  Google Scholar 

  18. K Langanke and M Wiescher Rep. Prog. Phys. 64 1657 (2001).

    Article  ADS  Google Scholar 

  19. N C Sterling, H L Dinerstein and T R Kallman Astrophys. J. Suppl. Ser. 169 37 (2007).

    Article  ADS  Google Scholar 

  20. N C Sterling and H L Dinerstein Astrophys. J. Suppl. Ser. 174 157 (2008).

    Article  ADS  Google Scholar 

  21. D A Macaluso et al. J. Phys. B: At. Mol. Opt. Phys. 52 145002 (2019).

    Article  ADS  Google Scholar 

  22. D A Esteves et al. Phys. Rev. A 84 013406 (2011).

    Article  ADS  Google Scholar 

  23. B M McLaughlin, C P Balance J. Phys. B At. Mol. Opt. Phys. 45 095202 (2012).

    Article  ADS  Google Scholar 

  24. I Sakho J. At. Mol. Sci. 1 224 (2010).

    Google Scholar 

  25. I Sakho J. At. Mol. Sci. 1 103 (2010).

    Google Scholar 

  26. I Sakho J. At. Mol. Sci. 5 206 (2014).

    Google Scholar 

  27. A Diallo, M D Ba, J K Badiane, M T Gning, M Sow and I Sakho J. Mod. Phys. 9 *-* (2018).

  28. A Diallo, M D Ba, J K Badiane, M T Gning, M Sow and I Sakho Jour. Atom, Mol. Conden. Nano Phys. 5 215 (2018).

    Article  Google Scholar 

  29. I Sakho Jour. Atom Mol. Conden. Nano Phys. 6 93 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Gning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gning, M.T., Sakho, I. & Diallo, A. Photoionization study of K III and Br IV ions in the framework of the modified orbital atomic theory. Indian J Phys 97, 3759–3773 (2023). https://doi.org/10.1007/s12648-023-02607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02607-0

Keywords

Navigation