Skip to main content
Log in

Simulation optimized design of graphene-based hybrid plasmonic waveguide

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A unique graphene-based hybrid plasmonic waveguide (GHPW) is proposed with a relatively high figure of merit (FOM) and long propagation length (\({L}_{\mathrm{spp}}\)) in the far-infrared (FIR) region. The proposed waveguide is combined of a high-index cylindrical dielectric in the coordinate origin, a low-index dielectric strip, and a monolayer graphene that set are surrounded by \({\mathrm{SiO}}_{2}\) rectangular cube. The modal features of the graphene surface plasmon polariton (SPP) mode are investigated via the finite element technique. Finding results display that a propagation length of \(\sim 10^{5} { }\;{\text{nm}}\) and a figure of merit \(\sim {10}^{5}\) can be obtained by tuning the dimensions of the waveguide geometry and the different materials. Therefore, propagation properties of the proposed waveguide improve significantly by changing the materials type of dielectric strip and cylindrical dielectric. According to the present findings, the GHPW can be used in the optoelectronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W L Barnes, A Dereux and T W Ebbesen Opt. Nat. 424 824 (2003)

    Article  Google Scholar 

  2. Y Qi, P Zhou, T Zhang, X Zhang, Y Wang, C Liu, Y Bai and X Wang Results Phys. 14 102506 (2019)

    Article  Google Scholar 

  3. J Chen, X Wang, F Tang, X Ye, L Yang and Y Zhang Results Phys. 16 102867 (2020)

    Article  Google Scholar 

  4. M B Heydari and M H V Samiei Opt. Quantum Electron. 52 406 (2020)

    Article  Google Scholar 

  5. Z Liu, G Liu, X Liu and G Fu Nanotechnology 31 115208 (2019)

    Article  ADS  Google Scholar 

  6. X Wang, Z Pang, H Yang and Y Qi Results Phys. 14 102446 (2019)

    Article  Google Scholar 

  7. M R Jafari, F Ebrahimi and M Nooshirvani J. Appl. Phys. 108 054313 (2010)

    Article  ADS  Google Scholar 

  8. M R Jafari and F Ebrahimi J. Sci. 21 279 (2010)

    Google Scholar 

  9. M R Jafari and M Omidi Appl. Phys. A 125 466 (2019)

    Article  ADS  Google Scholar 

  10. X He, T Ning, S Lu, J Zheng, J Li, R Li and L Pei Opt. Express 26 10109 (2018)

    Article  ADS  Google Scholar 

  11. D Teng et al. Nanomaterials 12 1950 (2022)

    Article  Google Scholar 

  12. N Ranjkesh, M Basha, A Taeb, A Zandieh, S Gigoyan and S Safavi-Naeini IEEE Trans. THz Sci. Technol. 5 268 (2015)

    Article  Google Scholar 

  13. T S Saini, A Kumar and R K Sinha J. Light Wave Technol. 33 3914 (2015)

    Article  ADS  Google Scholar 

  14. A S Hasan, R J Al-Azawi and A A Alwahib Eng. Technol. J. 40 1 (2022)

    Google Scholar 

  15. E Moreno, S G Rodrigo and S I Bozhevolnyi Rev. Lett. 100 023901 (2008)

    Article  ADS  Google Scholar 

  16. H Gao, Q Cao, M Zhu, D Teng and S Shen Opt. Express 22 32071 (2014)

    Article  ADS  Google Scholar 

  17. Q Zhang, H Hao, J Ren, F Zhang, Q Gong and Y Gu Nanoscale 12 10082 (2020)

    Article  Google Scholar 

  18. R F Oulton, V J Sorger and D A Genov Photonics 2 496 (2008)

    Article  Google Scholar 

  19. Z Zhang and J Wang Sci. Rep. 4 6870 (2014)

    Article  ADS  Google Scholar 

  20. Y Gao, G Ren and B Zhu Opt. Lett. 39 5909 (2014)

    Article  ADS  Google Scholar 

  21. T J Huang, L Z Yin, J Zhao, C H Du and P K Liu ACS Photon. 7 2173 (2020)

    Article  Google Scholar 

  22. Y Gao and I V Shadrivov Opt. Lett. 41 3623 (2016)

    Article  ADS  Google Scholar 

  23. M R Jafari, B Bahrami and T Abolghasemi J. Electron. Mater. 46 573 (2017)

    Article  ADS  Google Scholar 

  24. R Aboltaman and M Shahmansouri Commun. Theoret. Phys. 72 045501 (2020)

    Article  ADS  Google Scholar 

  25. K S Novoselov, V I Fal, L Colombo, P R Gellert, M G Schwab and K Kim Nature 490 192 (2012)

    Article  ADS  Google Scholar 

  26. A K Giem and I V Grigorieva Nature 499 419 (2013)

    Article  Google Scholar 

  27. M B Heydari and M H V Samiei Photon. Nanostruct. Fundamen. Appl. 42 100834 (2020)

    Article  Google Scholar 

  28. K B M Rakib Hasan, M Asiful Islam and M Shah Alam J. Opt. Soc. Am. B 37 2696 (2020)

    Article  ADS  Google Scholar 

  29. M Dehghan, M K Moravvej-Farshi, M Ghaffari-Miab, M Jabbari and G Darvish Plasmonics 14 1335 (2019)

    Article  Google Scholar 

  30. M Shahmansouri and M Mahmodi Moghadam Phys. Plasmas 24 102107 (2017)

    Article  ADS  Google Scholar 

  31. M Mahmoudi Moghadam and M Shahmansouri Phys. Scrip. 95 085606 (2020)

    Article  ADS  Google Scholar 

  32. L Ye, K Sui, Y Liu, M Zhang and Q Liu Opt. Express 26 15935 (2018)

    Article  ADS  Google Scholar 

  33. M Heidari and V Ahmadi IEEE Access 7 43406 (2019)

    Article  Google Scholar 

  34. Z Yi et al. Micromachines 10 194 (2019)

    Article  Google Scholar 

  35. X Luo, Z Q Cheng, X Zhai, Z M Liu, S Q Li, J P Liu, L L Wang, Q Lin and Y H Zhou Nanoscale Res. Lett. 14 1 (2019)

    Article  ADS  Google Scholar 

  36. L Han, X He, L Ge, T Huang, H Ding and C Wu Plasmonics 14 2021 (2019)

    Article  Google Scholar 

  37. X He, T Ning, L Pei, J Zheng, J Li and J Wang Results Phys. 21 103834 (2021)

    Article  Google Scholar 

  38. Y Hajati, Z Zanbouri and M Sabaeian J. Opt. Soc. Am. B 35 446 (2018)

    Article  ADS  Google Scholar 

  39. Y Sun, Y Bian, Z Zheng, J Liu and Z Gong Photon. Conf. (IPC) IEEE 544 (2013)

  40. Y Sun Y Bian, X Zhao, Z Zheng, Jianwei Liu, and Jiansheng Liu Opt. Soc. Am. JTu4A.33 (2013)

  41. J Frigerio et al Phys. Rev. B 94 085202 (2016)

    Article  ADS  Google Scholar 

  42. J A Gonzalez-Cuevas, T F Refaat, M NurulAbedin and H E Elsayed-Ali J. Appl. Phys. 102 014504 (2007)

    Article  ADS  Google Scholar 

  43. D E Aspnes and A A Studna Phys. Rev. B 27 985 (1983)

    Article  ADS  Google Scholar 

  44. B O Seraphin and H E Bennett Academic, New York 3 499 (1967)

    Google Scholar 

  45. M Saeed, A Ghaffar, S U Rehman, M Y Naz, S Shukrullah and Q A Naqvi Plasmonics 17 901 (2022)

    Article  Google Scholar 

  46. L Ye, Y Chen, G Cai, N Liu, J Zhu, Z Song and Q H Liu Opt. Express 25 11223 (2017)

    Article  ADS  Google Scholar 

  47. D Teng, Y Wang, T Xu, H Wang, Q Shao and Y Tang Nanomaterials 11 1281 (2021)

    Article  Google Scholar 

  48. G W Hanson J. Appl. Phys. 103 064302 (2008)

    Article  ADS  Google Scholar 

  49. W Zouaghi, D Voß, M Gorath, N Nicoloso and H G Roskos Carbon 94 301 (2015)

    Article  Google Scholar 

  50. A Asadi, M R Jafari and M Shahmansouri Plasmonics 17 1819 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, A., Jafari, M.R. & Shahmansouri, M. Simulation optimized design of graphene-based hybrid plasmonic waveguide. Indian J Phys 97, 2515–2522 (2023). https://doi.org/10.1007/s12648-023-02601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02601-6

Keywords

Navigation