Skip to main content

Advertisement

Log in

Energy analysis at the boundary interface of elastic and piezothermoelastic half-spaces

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present investigation analyzed the energy ratios at the interface of elastic half-space (ES) and nonlocal orthotropic piezothermoelastic half-space with dual-phase lag memory-dependent derivatives (NPS) in the context of different temperature models: hyperbolic two-temperature, classical two-temperature, and without-two-temperature in the presence and absence of memory-dependent derivatives and nonlocal effects. Plane waves involving P or SV type propagating through ES and striking at the interface result in two waves reflected and four waves transmitted. Amplitude ratios are determined in closed form, and these are used to obtain the energy ratios of various reflected and transmitted waves. The law of conservation of energy is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. P. J. Chen and M. E. Gurtin Zeitschrift für Angew. Math. und Phys. ZAMP 19 614 (1968)

  2. P. J. Chen and W. O. Williams Zeitschrift für Angew. Math. und Phys. ZAMP 19 969 (1968)

  3. P. J. Chen, M. E. Gurtin, and W. O. Williams Zeitschrift für Angew. Math. und Phys. ZAMP 20 107 (1969)

  4. H. M. Youssef IMA J. Appl. Math. 71 383 (2006)

  5. H. W. Lord and Y. Shulman J. Mech. Phys. Solids 15 299 (1967)

  6. S Banik and M Kanoria J. Therm. Stress. 36 71 (2013)

    Article  Google Scholar 

  7. H. M. Youssef and A. A. El-Bary Mater. Phys. Mech. 40 158 (2018)

  8. E. Bassiouny and R. Rajagopalan Adv. Dyn. Syst. Appl., 15 217 (2020)

  9. D Y Tzou J. Heat. Transfer 117 8 (1995)

    Article  Google Scholar 

  10. R. Quintanilla and R. Racke SIAM J. Appl. Math. 66 977 (2006)

  11. S Mondal, S H Mallik and M Kanoria Int. Sch. Res. Not. 2014 1 (2014)

    Article  Google Scholar 

  12. J. L. Wang and H. F. Li Comput. Math. with Appl. 62 1562 (2011)

  13. M. Caputo and F. Mainardi Pure Appl. Geophys. 91 134 (1971)

  14. R. Kumar and P. Sharma Indian J. Phys. 94 1975 (2020)

  15. R. Kumar and P. Sharma Mater. Phys. Mech. 47 196 (2021)

  16. D. G. B. Edelen and N. Laws Arch. Ration. Mech. Anal. 43 24 (1971)

  17. D G B Edelen, A E Green and N Laws Arch. Ration. Mech. Anal. 43 36 (1971)

    Article  Google Scholar 

  18. A. C. Eringen and D. G. B. Edelen Int. J. Eng. Sci. 10 233 (1972)

  19. C. Polizzotto Int. J. Solids Struct. 38 7359 (2001)

  20. A. Chakraborty Int. J. Solids Struct. 44 5723 (2007)

  21. D Singh, G Kaur and K S Tomar J. Elast. 128 85 (2017)

    Article  Google Scholar 

  22. A. K. Vashishth and H. Sukhija Appl. Math. Mech. 36 11 (2015)

  23. M Barak, M Kumari and M Kumar AIMS Geosci. 3 67 (2017)

    Article  ADS  Google Scholar 

  24. M Kumar, M Kumari and M S Barak Pet. Sci. 15 521 (2018)

    Article  Google Scholar 

  25. M Kumar, M S Barak and M Kumari Pet. Sci. 16 298 (2019)

    Article  Google Scholar 

  26. M Kumar, A Singh, M Kumari and M S Barak Acta Mech. 232 33 (2021)

    Article  MathSciNet  Google Scholar 

  27. D. Li and T. He Heliyon, 4 e00860 (2018)

  28. N Sarkar, D Ghosh and A Lahiri Mech. Adv. Mater. Struct. 26 957 (2019)

    Article  Google Scholar 

  29. D. X. Tung Vietnam J. Mech. 41 363 (2019).

  30. P. Zhang and T. He Waves in Random and Complex Media 30 142 (2020)

  31. A. Sur and S. Mondal Waves in Random and Complex Media 1 (2020)

  32. W. Yang and Z. Chen Int. J. Heat Mass Transf., 156 119752 (2020)

  33. M. Kumar, X. Liu, M. Kumari, and P. Yadav, Int. J. Numer. Methods Heat Fluid Flow, 32 3526 (2022)

  34. M. Kumar, X. Liu, K. K. Kalkal, V. Dalal, and M. Kumari, Int. J. Numer. Methods Heat Fluid Flow 32 1911 (2022)

  35. M Kumari, P Kaswan, M Kumar and P Yadav Eur. Phys. J. Plus 137 6 (2022)

    Article  Google Scholar 

  36. M A Ezzat, A S El-Karamany and A A El-Bary Eur. Phys. J. Plus 131 1 (2016)

    Article  Google Scholar 

  37. J. D. Achenbach Wave Propagation in Elastic Solids (North Holland: Elsevier) (1975)

  38. M. A. Biot Journal of Applied Physics 27 3 (1956)

  39. W. S. Slaughter, The linearized theory of elasticity (Boston: Springer Science & Business Media) (2002)

  40. R. Kumar and P. Sharma Eur. Phys. J. Plus 136 1200 (2021)

Download references

Acknowledgements

The author (Mr. Vipin Gupta) is thankful and acknowledges to Council of Scientific and Industrial Research (CSIR), New Delhi (File. No. 09/1293(0003)/2019-EMR-I) for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Gupta.

Ethics declarations

Conflict of interest

The authors declared that there is no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

$$ \begin{aligned} f_{{11}} = & m_{{12}} (m_{{22}} (m_{{34}} m_{{44}} + m_{{32}} m_{{46}} ) + m_{{31}} (m_{{24}} m_{{46}} - m_{{26}} m_{{44}} ) \\ & + \;m_{{42}} (m_{{24}} m_{{34}} + m_{{26}} m_{{32}} )) \\ \end{aligned} $$
$$ \begin{aligned} f_{12} = & m_{1} [m_{14} (m_{22} m_{34} - m_{26} m_{31} - m_{31} m_{46} - m_{34} m_{42} ) - m_{13} (m_{32} m_{46} + m_{24} m_{34} + m_{26} m_{32} - m_{34} m_{44} ) \\ & + \;m_{16} (m_{22} m_{32} + m_{24} m_{31} + m_{31} m_{44} - m_{32} m_{42} )] + m_{11} [m_{22} (m_{34} m_{44} + m_{32} m_{46} ) + m_{24} (m_{34} m_{42} + m_{31} m_{46} ) \\ & + m_{26} (m_{32} m_{42} - m_{31} m_{44} )] + m_{12} [m_{21} (m_{34} m_{44} + m_{32} m_{46} ) + m_{22} (m_{32} m_{45} + + m_{34} m_{43} + m_{33} m_{44} ) \\ & + m_{23} (m_{34} m_{42} + m_{31} m_{46} ) + m_{24} (m_{33} m_{42} + m_{31} m_{45} + m_{34} m_{41} ) + m_{25} (m_{32} m_{42} - m_{31} m_{44} ) + m_{26} (m_{32} m_{41} \\ & - m_{31} m_{43} )] + m_{1} [m_{14} (m_{22} m_{46} + m_{26} m_{42} ) + m_{13} (m_{26} m_{44} - m_{24} m_{46} ) - m_{16} (m_{22} m_{44} + m_{24} m_{42} )] \\ \end{aligned} $$
$$ \begin{aligned} f_{{13}} = & m_{1} [m_{{14}} (m_{{21}} m_{{46}} + m_{{22}} m_{{45}} + m_{{21}} m_{{34}} + m_{{22}} m_{{33}} \\ & + m_{{25}} m_{{42}} + m_{{26}} m_{{41}} - m_{{34}} m_{{41}} - m_{{31}} (m_{{25}} + m_{{42}} \\ & + \;m_{{45}} )) + m_{{15}} (m_{{22}} m_{{32}} + m_{{24}} m_{{31}} - m_{{22}} m_{{44}} - m_{{32}} m_{{42}} \\ & - m_{{24}} m_{{42}} m_{{31}} m_{{44}} ) + m_{{13}} (m_{{25}} m_{{44}} + m_{{26}} m_{{43}} \\ & + \;m_{{23}} m_{{34}} - m_{{32}} m_{{45}} - m_{{33}} m_{{44}} - m_{{34}} m_{{43}} - m_{{23}} m_{{46}} \\ & - \;m_{{24}} m_{{45}} - m_{{24}} m_{{33}} - m_{{25}} m_{{32}} ) + m_{{16}} (m_{{21}} m_{{32}} \\ & + \;m_{{23}} m_{{31}} - m_{{32}} m_{{41}} + m_{{31}} m_{{43}} - m_{{23}} m_{{42}} - m_{{24}} m_{{41}} \\ & - \;m_{{21}} m_{{44}} - m_{{22}} m_{{43}} )] + m_{{11}} [m_{{31}} (m_{{23}} m_{{46}} + m_{{24}} m_{{45}} \\ & - \;m_{{25}} m_{{44}} - m_{{26}} m_{{43}} ) + m_{{32}} (m_{{21}} m_{{46}} + m_{{25}} m_{{42}} \\ & + \;m_{{26}} m_{{41}} + m_{{22}} m_{{45}} ) + m_{{33}} (m_{{22}} m_{{44}} + m_{{24}} m_{{42}} ) \\ & + \;m_{{34}} (m_{{23}} m_{{42}} + m_{{24}} m_{{41}} + m_{{21}} m_{{44}} + m_{{22}} m_{{43}} )] \\ & + \;m_{{12}} [m_{{21}} ( + m_{{33}} m_{{44}} m_{{32}} m_{{45}} + m_{{34}} m_{{43}} ) + m_{{23}} (m_{{33}} m_{{42}} \\ & + \;m_{{34}} m_{{41}} + m_{{31}} m_{{45}} ) + m_{{25}} (m_{{32}} m_{{41}} - m_{{31}} m_{{43}} ) \\ & + \;m_{{33}} (m_{{24}} m_{{41}} + m_{{22}} m_{{43}} )] \\ \end{aligned} $$
$$ \begin{aligned} f_{14} = & m_{1} [m_{14} m_{33} (m_{21} - m_{41} ) + m_{13} (m_{25} m_{43} - m_{23} m_{45} ) - m_{13} m_{33} (m_{23} + m_{43} ) + m_{15} (m_{21} m_{32} + m_{23} m_{31} \\ & - \;m_{32} m_{41} + m_{31} m_{43} - m_{23} m_{42} - m_{24} m_{41} - m_{21} m_{44} - m_{22} m_{43} ) - m_{1} (m_{21} m_{43} + m_{23} m_{41} )] + m_{11} [m_{21} (m_{32} m_{45} \\ & + \;m_{33} m_{44} + m_{34} m_{43} ) + m_{23} (m_{34} m_{41} + m_{31} m_{45} + m_{33} m_{42} ) + m_{25} (m_{32} m_{41} - m_{31} m_{43} ) + m_{33} (m_{22} m_{43} \\ & + \;m_{24} m_{41} )] + m_{12} m_{33} (m_{21} m_{43} + m_{23} m_{41} ) + m_{14} m_{1} (m_{21} m_{45} + m_{25} m_{41} ) \\ \end{aligned} $$
$$ f_{15} = m_{11} m_{33} (m_{21} m_{43} + m_{23} m_{41} ) - m_{15} m_{1} (m_{21} m_{43} + m_{23} m_{41} ) $$

\(F_{1i} = - \left[ {\frac{{c_{13} }}{c} + \left( {c_{33} W_{i} + \frac{{\eta_{33} \beta_{11} T_{0} }}{{\eta_{31} }}\Phi_{i} } \right)q_{i} - \frac{{\beta_{33} c_{11} }}{{\beta_{11} \iota \omega }}p_{i} \Theta_{i} } \right]\), \(F_{2i} = - \frac{{c_{55} W_{i} }}{c} - c_{55} q_{i} - \frac{{\eta_{15} \beta_{11} T_{0} \Phi_{i} }}{{c\eta_{31} }}\) \(F_{3i} = 1\), \(F_{4i} = W_{i}\), \(F_{5i} = p_{i} q_{i} \Theta_{i}\), \(F_{6i} = - \frac{{\eta_{31} }}{c} - \eta_{33} q_{i} W_{i} + \frac{{\varepsilon_{33} T_{0} \beta_{11} }}{{\eta_{31} }}q_{i} \Phi_{i} - \frac{{\tau_{3} c_{11} }}{{\iota \omega \beta_{11} }}p_{i} \Theta_{i}\)\(p_{i} = \omega^{2} \frac{{\tau_{11}^{*} }}{{c^{2} }} + \tau_{33}^{*} \omega^{2} q_{i}^{2} - 1\;\;\left( {i = 1,\;2,\;3,\;4} \right)\).

For incident P wave

\(F_{15} = - \iota \omega \rho^{e} c_{1}^{2} \left[ {1 - \frac{{2\alpha_{2}^{{e^{2} }} \sin^{2} \theta_{0} }}{{\alpha_{1}^{{e^{2} }} }}} \right]\), \(F_{16} = \iota \omega \rho^{e} c_{1}^{2} \sin 2\theta_{2}\), \(F_{25} = \frac{{\iota \omega \alpha_{2}^{{e^{2} }} \rho^{e} c_{1}^{2} \sin 2\theta_{0} }}{{\alpha_{1}^{{e^{2} }} }}\).

\(F_{26} = \iota \omega \rho^{e} c_{1}^{2} \cos 2\theta_{2}\), \(F_{35} = \frac{{\iota \omega \sin \theta_{0} }}{{\alpha_{1}^{*} }}\), \(F_{36} = \frac{{\iota \omega \cos \theta_{2} }}{{\alpha_{2}^{*} }}\), \(F_{45} = - \frac{{\iota \omega \cos \theta_{0} }}{{\alpha_{1}^{*} }}\), \(F_{46} = \frac{{\iota \omega \sin \theta_{2} }}{{\alpha_{2}^{*} }}\).

\(X_{i} = \frac{{L_{i} }}{{A_{0}^{e} }},\,(i = 1,\;2,\;3,\;4)\), \(X_{5}^{e} = \frac{{A_{1}^{e} }}{{A_{0}^{e} }}\), \(X_{6}^{e} = \frac{{B_{1}^{e} }}{{A_{0}^{e} }}\), \(S_{1} = - F_{15}\), \(S_{2} = F_{25}\), \(S_{3} = - F_{35}\), \(S_{4} = F_{45}\).

For incident SV wave

\(F_{15} = - \iota \omega \rho^{e} c_{1}^{2} \left[ {1 - \frac{{2\alpha_{2}^{{e^{2} }} \sin^{2} \theta_{1} }}{{\alpha_{1}^{{e^{2} }} }}} \right]\), \(F_{16} = \iota \omega \rho^{e} c_{1}^{2} \sin 2\theta_{0}\), \(F_{25} = \frac{{\iota \omega \alpha_{2}^{{e^{2} }} \rho^{e} c_{1}^{2} \sin 2\theta_{1} }}{{\alpha_{1}^{{e^{2} }} }}\).

\(F_{26} = \iota \omega \rho^{e} c_{1}^{2} \cos 2\theta_{0}\), \(F_{35} = \frac{{\iota \omega \sin \theta_{1} }}{{\alpha_{1}^{*} }}\), \(F_{36} = \frac{{\iota \omega \cos \theta_{0} }}{{\alpha_{2}^{*} }}\), \(F_{45} = - \frac{{\iota \omega \cos \theta_{1} }}{{\alpha_{1}^{*} }}\), \(F_{46} = \frac{{\iota \omega \sin \theta_{0} }}{{\alpha_{2}^{*} }}\).

\(S_{1} = F_{16}\), \(S_{2} = - F_{26}\), \(S_{3} = F_{36}\), \(S_{4} = - F_{46}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barak, M.S., Kumar, R., Kumar, R. et al. Energy analysis at the boundary interface of elastic and piezothermoelastic half-spaces. Indian J Phys 97, 2369–2383 (2023). https://doi.org/10.1007/s12648-022-02568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02568-w

Keywords

Navigation