Skip to main content

Advertisement

Log in

Pyrolysis temperature effect on electrical properties and ethane storage capacity of bimodal porous synthetic carbon

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using the sol–gel method coupled with thermal treatment in an inert atmosphere, electrical conducting bimodal porous carbon materials based on pyrogallol-formaldehyde (PyFo) were prepared. The pyrolysis temperature is the keynote factor for the preparation condition of the samples. In this work, we studied how this factor affects the pore structure and the ethane (C2H6) adsorption capacity of the synthetic carbon based on PyFo xerogel at relatively low pressure. In order to explain the C2H6 storage capacity and the adsorption mechanism of the synthesized materials, different characterization techniques were performed. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption–desorption isotherms (N2 adsorption–desorption), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were investigated for a series of samples pyrolyzed at different temperatures from 150 to 1000 °C in order to correlate the proprieties of our materials to the ethane storage capacity. The different samples exhibit bimodal porosity with macropores dimensions of the order of 1 m and micropores size of 2 nm. The porosity, the specific surface area, and the electrical conductivity change tremendously with pyrolysis temperature. The obtained results proved that this last parameter had an interesting effect on structural, textural, and electrical properties. For the C2H6 adsorption capacity, the sample prepared at 1000 °C showed the maximum adsorption capacity of 4 mmol.g−1 at room temperature and at a relatively low pressure of about 10 bars. It was found that both the nanopore volume and charge state surface had a huge influence on the ethane storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article. You can open them with Origin software.

References

  1. B Liu and S Liu J. Hydrog. Energy 45 1385 (2020).

    Article  Google Scholar 

  2. S Nallakukkala and B Lab J. Environ. Chem. Eng 9 105053 (2021).

    Article  Google Scholar 

  3. A Diao and Y Wang Therm. Eng 142 665 (2018).

    Article  Google Scholar 

  4. C Schorlemmer J. Chem. Soc 17 262 (1864).

    Article  Google Scholar 

  5. P Liu, X Wang, X Li, T Zhang, G Du and W Liu Fuel 279 118038 (2020).

    Article  Google Scholar 

  6. R Dhahri et al. J. Phys. D Appl. Phy. 49 135502 (2016).

    Article  ADS  Google Scholar 

  7. R Dhahri, M Hjiri, L El Mir, A Bonavita, D Iannazzo, S G Leonardi and G Neri Appl. Surf. Sci. 355 1321 (2015).

    Article  ADS  Google Scholar 

  8. A Bill, A Wokmann, B Eliasson, E Killer and U Kogelschatz Energy. Convers. Manag 38 5415 (1997).

    Article  Google Scholar 

  9. X Yu, J Li, Z Chen, K Wu, L Zhang and S Yang Eng. J 410 127690 (2021).

    Google Scholar 

  10. S Noro, R Ochi, Y Inubushi, K Kubo and T Nakamura Microporous Mesoporous Mater 216 92 (2015).

    Article  Google Scholar 

  11. H Xiang, A Ameen, P Gorgojo, F R Siperstein, S M Holmes and X Fan Microporous Mesoporous Mater 292 109724 (2020).

    Article  Google Scholar 

  12. T Sueki and T Takaishi Res 42 015004 (2010).

    Google Scholar 

  13. Y Zhang J. Power Sources 492 229664 (2021).

    Article  Google Scholar 

  14. S Marini et al. Electroanalysis 30 727 (2017).

    Article  Google Scholar 

  15. N Ben Mansour, W Djeridi and L El Mir J. Inorg. Organomet Polym. Mater 31 4360 (2021).

    Article  Google Scholar 

  16. S Sharma, R Kamath and M Madou J. Ana. Appl. Pyrolysis 108 12 (2014).

    Article  Google Scholar 

  17. L El Mir Int. J. Nano and Biomater 21 1 (2009).

    Google Scholar 

  18. W Djeridi, N Ben Mansour, A Ouederni, P L Llewellyn and L El Mir Int. J. Hydrog. Energy 40 13690 (2015).

    Article  Google Scholar 

  19. N Ben Mansour, I Najeh, S Mansouri and L El Mir Appl. Surf. Sci. 337 158 (2015).

    Article  ADS  Google Scholar 

  20. W Djeridi, N Ben Mansour, A Ouederni, P L Llewelly and L El Mir Int. J. Hydrogen Energy 42 8905 (2017).

    Article  Google Scholar 

  21. S Kumar, D Grekou, P Pré and B J Alappart Sustain. Energy Rev 124 109743 (2020).

    Article  Google Scholar 

  22. S Hiyashimoto, Y Sasakura, R Tokunaga, M Takahashi, H Kobayashi, J Jiang and Y Sakata Appl. Catal. A Gen 623 118240 (2021).

    Article  Google Scholar 

  23. M D Donohue and G L Aranovich Adv. Colloid Interface Sci 76 137 (1998).

    Article  Google Scholar 

  24. P H Ho, V Lofty, A Basta and P Trens J. Clean. Prod 294 126260 (2021).

    Article  Google Scholar 

  25. B S Girgis, I Y El-Sherif, A A Attia, N A Fathy and J Non-Cryst Solids 358 741 (2012).

    Google Scholar 

  26. A Sanchez-Sanchez, F L Braghiroli, M T Izquierdo, J Parmentier, A Celzard and V Fierro Ind. Corps. Prod 154 112564 (2020).

    Article  Google Scholar 

  27. A H Moreno, A Arenillas, E G Calvo, J M Bermudez and J A Menendez J. Anal. Appl. Pyrol 100 111 (2013).

    Article  Google Scholar 

  28. R Civioc, M Lattuada, M M Koebel and S Galmarini J. Solgel. Sci. Technol 95 719 (2020).

    Article  Google Scholar 

  29. W Djeridi, N Ben Mansour, A Ouederni, P L Llewelly, A Alyamani and L El Mir Mater Res. Bull 73 130 (2016).

    Article  Google Scholar 

  30. W Djeridi, N Ben Mansour, A Ouederni, P L Llewelly and L El Mir Solid States Sci 93 37 (2019).

    Article  ADS  Google Scholar 

  31. Y Wang and B Chang J. Solid State Electrochem 19 1783 (2015).

    Article  Google Scholar 

  32. H Zhou, S Xu, H Su, M Wang, W Qiao, L Ling and D Long Chem. Commun 49 3763 (2013).

    Article  Google Scholar 

  33. Y Tzeng, J L He, C Y Jhan and Y H Wu Nanomaterials 11 302 (2021).

    Article  Google Scholar 

  34. N Ben Mansour and L El Mir Solid State Sci 85 38 (2018).

    Article  ADS  Google Scholar 

  35. N Ben Mansour and L El Mir J. Phys. Chem. Solids 127 1 (2019).

    Article  ADS  Google Scholar 

  36. I Najeh, N Ben Mansour, M Mbarki, A Houas, J P Nogier and L El Mir Solid State Sci. 11 1747 (2009).

    Article  ADS  Google Scholar 

  37. I Najeh, N Ben Mansour, H Dahman, A Alyamani and L El Mir J. Phys. Chem. Solids 73 707 (2012).

    Article  ADS  Google Scholar 

  38. L El Mir, S Kraiem, M Bengagi, E Elaloui, A Ouderni and S Alaya Physica B 395 104 (2007).

    Article  ADS  Google Scholar 

  39. X Wang, Y Wu, J Peng, Y Wu, J Xiao, Q Xia and Z Li Chem. Eng. J 358 1114 (2019).

    Article  Google Scholar 

  40. A K Jonscher Nature 276 673 (1977).

    Article  ADS  Google Scholar 

  41. Y Liu, Y Wu, W Liang, J Peng, Z Li, H Wang, M J Janik and J Xiao Chem. Eng. Sci. 220 115636 (2020).

    Article  Google Scholar 

  42. D Lv, P Zhou, J Xu, S Tu, F Xu, J Yan, H Xi, W Yuan, Q Fu, X Chen and Q Xia Chem. Eng. J 29 133208 (2021).

    Google Scholar 

  43. N Ben Mansour, W Djeridi and L El Mir J. Inorg. Organomet. Polym. Mater 29 192 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research through the budget of the Tunisian Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

All the authors conceived the study design. WA and HJ contributed to conceptualization, methodology, investigation, data analysis, and original draft preparation. WD and NBM contributed to synthesis conceptualization and structural electrical and textural characterizations. PLL performed gas storage measurements. HD and LEM performed the supervision, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to L El Mir.

Ethics declarations

Conflict of interest

The authors declare the absence of all known competing financial interests or personal relationships which could influence this work.

Ethical standards.

All procedures performed in the studies comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Jeidi, H., Djeridi, W. et al. Pyrolysis temperature effect on electrical properties and ethane storage capacity of bimodal porous synthetic carbon. Indian J Phys 97, 1769–1779 (2023). https://doi.org/10.1007/s12648-022-02530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02530-w

Keywords

Navigation