Skip to main content
Log in

Electrical noise in Ge-source double-gate PNPN tunnel field effect transistor

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The noise behavior of a proposed Ge-source counter-doped pocket-based double-gate tunnel FET (GS-PNPN-TFET) in the presence and absence of interfacial trap charge conditions is presented. The noise behavior was studied in terms of drain current noise power spectral density (Sid, unit A2/Hz) and gate voltage electron noise power spectral density (Svgee, unit V2/Hz) against variation of various device parameters, viz., body thickness (Tsi), pocket length (Lp), gate-oxide thickness (Tox), gate-oxide material, mole fraction, and doping density using Sentaurus TCAD software. Oxide–semiconductor interfacial trap charge of Gaussian distribution was used at two frequencies − 1 MHz and 10 GHz. Our analysis also includes the impact of temperature variation on noise. As per our findings, the noise spectrums are comparable for the presence and absence of interfacial trap charges in the proposed TFET. This is because the noise spectrum depends on on-current (ION) and the ION is negligibly influenced by the interfacial trap charges in the proposed TFET. However, off-current (IOFF) degrades when trap charges are present at the interface. In comparison with other FET devices, the proposed device offers improved Sid and Svgee values of roughly 1.82 × 10–29 A2/Hz and 5.5 × 10–20 V2/Hz, respectively, at 10 GHz frequency. Furthermore, the diffusion noise predominates at higher frequencies, while the generation–recombination noise is found to be dominant at low frequencies, as expected. Flicker noise is most noticeable at low and medium frequencies but fades away at higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q Zhang, W Zhao and A Seabaugh IEEE Electron Dev. Lett. 27 297 (2006).

    Article  ADS  Google Scholar 

  2. A M Ionescu and H Riel Nature 479 329 (2011).

    Article  ADS  Google Scholar 

  3. K Boucart and A M Ionescu IEEE trans. on electron dev. 54 1725 (2007).

    Article  ADS  Google Scholar 

  4. A Chauhan, G Saini and K Yerur Superlattices microstruct. 124 79 (2018).

    Article  ADS  Google Scholar 

  5. S B Rahi, P Asthana and S Gupta Journal of Comp. Elect. 16 30 (2017).

    Article  Google Scholar 

  6. L K Vandamme, X Li and D Rigaud IEEE Trans. on Electron Dev. 41 1936 (1994).

    Article  ADS  Google Scholar 

  7. R Pandey, B Rajamohanan, H Liu, V Narayanan and S Datta IEEE Trans. on Electron Dev. 61 552 (2013).

    Article  ADS  Google Scholar 

  8. F S Neves, P G Agopian, J A Martino, B Cretu, R Rooyackers, A Vandooren, E Simoen, A V Y Thean and C Claeys IEEE Trans. on Electron Dev. 63 1658 (2016).

    Article  ADS  Google Scholar 

  9. R Goswami and B Bhowmick Baishya Superlattices Microstruct. 86 342 (2015).

    Article  ADS  Google Scholar 

  10. M Haartman and M Östling (Springer Science & Business Media) (2007)

  11. F N Hooge IEEE Trans. on electron dev. 41 1926 (1994).

    Article  ADS  Google Scholar 

  12. J Xu and M J Deen Electronics Letters 38 429 (2002).

    Article  ADS  Google Scholar 

  13. P Ghosh and B Bhowmick Applied Phys. A 124 1 (2018).

    Article  Google Scholar 

  14. J Talukdar, G Rawat, K Singh and K Mummaneni Silicon 13 3971 (2021).

    Article  Google Scholar 

  15. K Baruah, R Das and S Baishya Applied Phys. A 126 1 (2020).

    Article  Google Scholar 

  16. S Chander, S K Sinha and R Chaudhary Superlattices Microstruct. 161 107101 (2022).

    Article  Google Scholar 

  17. K Baruah R G Debnath and S Baishya (Micro and Nanoelectronics Dev., Circuits and Systems (MNDCS)) (Singapore: Springer) (2022)

  18. S Bhattacherjee, S Roy, G Chakroborty and U Ray Journal of Physics Conf. Series 1797 1 (2021).

    Google Scholar 

  19. H J Shin et al Japanese Journal of Applied Phys. 59 10 100903 (2020).

    Article  ADS  Google Scholar 

  20. A Goel, S Rewari, S Verma and S Gupta Journal of Elect. Materials 50 108 (2021).

    Article  ADS  Google Scholar 

  21. N Damrongplasit, C Shin, S H Kim, R A Vega and T J K Liu IEEE trans. on electron dev. 58 3541 (2011).

    Article  ADS  Google Scholar 

  22. V Nagavarapu, R Jhaveri and J C Woo IEEE Trans. on Electron Dev. 55 1013 (2008).

    Article  ADS  Google Scholar 

  23. W Li and J C Woo IEEE Trans on Electron Dev. 67 1480 (2020).

    Article  ADS  Google Scholar 

  24. M Liu, M Cai, B Yu and Y Taur IEEE trans. on electron dev. 53 3146 (2006).

    Article  ADS  Google Scholar 

  25. R Goswami and B Bhowmick Procedia Computer Sci. 93 125 (2016).

    Article  Google Scholar 

  26. G Lee, J S Jang and W Y Choi Semiconductor sci and tech. 28 052001 (2013).

    Article  ADS  Google Scholar 

  27. H G Virani, R B R Adari and A Kottantharayil IEEE trans. on electron dev. 57 2410 (2010).

    Article  ADS  Google Scholar 

  28. Sentaurus Device User Guide, Version K-2015.06, (2015)

  29. S Datta, H Liu and V Narayanan Microelectronics Reliab. 54 861 (2014).

    Article  Google Scholar 

  30. J P Nougier IEEE Trans on Electron Dev. 41 2034 (1994).

    Article  ADS  Google Scholar 

  31. R Bijesh, D K Mohata, H Liu and S. Datta 70th Device Research Conf. IEEE, p 203 (2012)

  32. S H Kim, H Kam, C Hu and T J K Liu 2009 Symposium on VLSI Tech. IEEE p 178 (2009)

  33. J Wan, C Le Royer, A Zaslavsky and S Cristoloveanu Applied Phys. Letters 97 243503 (2010).

    Article  ADS  Google Scholar 

  34. M Hellenbrand, E Memišević, M Berg, O P Kilpi, J Svensson and L E Wernersson IEEE Electron Dev. Lett. 38 1520 (2017).

    Article  ADS  Google Scholar 

  35. K Roy Barman and S Baishya Applied Phys. A 125 401 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karabi Baruah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, K., Baishya, S. Electrical noise in Ge-source double-gate PNPN tunnel field effect transistor. Indian J Phys 97, 1473–1485 (2023). https://doi.org/10.1007/s12648-022-02508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02508-8

Keywords

Navigation