Abstract
In this work, the structural, optoelectronic, nuclear magnetic resonance (NMR) and electric field gradient (EFG) of the pure BiCaVO5 and substituted by Mg and Cd atoms were studied by the first principle calculation. The generalized gradient approximation (GGA) with including spin–orbit (SO) coupling effects was used to calculate the band gap values. Indirect band gaps values of 3.27, 3.18 and 2.58 eV are calculated for BiMVO5 (M = Ca, Mg and Cd) compounds by GGA + SO, respectively. T he band gap values decrease by including spin–orbit interaction. The obtained results show that the M ions play a key role on the 209Bi and 51 V chemical shifts which confirm the optoelectronic properties. Calculated plasmon energies are 28.76, 22.87 and 22.48 eV for BiMVO5 (M = Ca, Mg and Cd) compounds, respectively. From the EFG spectra’s analysis, it is found that the dominant binding orbitals of BiMgVO5 compound are formed along the z direction at Bi sites with −56.76 × 1021 V/m2. The wide plasmon energy range makes these materials suitable for the high-performance optical devices.
Similar content being viewed by others
References
S Benmokhtar, A El Jazouli, J P Chammade, P Gravereau, F Guillen and D de Waal J. Solid State. Chem. 177 4175 (2004)
S Uma, R Bliesner and A W Sleight J. Solid State Sciences 4 329 (2002)
F Abraham, M F Debreuille-Gresse, G Mairesse and G Nowogrocki J. Solid State Ionics 28–30 529 (1988)
K Cheng, L Chunchun, X Huaicheng, T Ying, S Yihua and F Liang J. American Ceramic Society 102 362 (2019)
A Barros, R Deloncle, J Deschamp and P Boutinaud Optical Materials 36 1724 (2014)
S E Nunes Journal of Solid State Chemistry 222 12 (2015)
S Cho Solid State Sciences 17 111 (2013)
A Aliev Physics and Chemistry of Minerals 42 663 (2015)
G Yang Journal of Materials Science: Materials in Electronics 31 7219 (2020)
H Mizoguchi, W J Marshall, A P Ramirez, A W Sleight and M A Subramanian Journal of Solid State Chemistry 180 3463 (2007)
Y Huang Optics Express 20 4360 (2012)
I Radosavljevic, J A K Howard and A W Sleight J. Inorg. Mater 2 543 (2000)
B Bentria, D Benbertal, M B Beucher, R Masse and A Mosset J. Chemical Crystallography 11 33 (2003)
G A de Wijs, R Laskowski, P Blaha, R W A Havenith, G Kresse and M Marsman J. Chem. Phys. 146 064115 (2017)
P Blaha, K Schwarz and P H Dederichs Phys. Rev. B 37 2792 (1988)
E Purcell, H Torrey and R Pound Phys. Rev. B 69 37 (1946)
F Bloch, W Hansen and M Packard Phys. Rev. B 69 127 (1946)
B Roy. Graduate Theses and Dissertations 14277 (2014)
J J van der Klink and H B Brom Progress in Nuclear Magnetic Resonance Spectroscopy 36 89 (2000)
M Bashi Materials Research Express 6 106314 (2019)
P Blaha, K Schwarz, F Tran, R Laskowski, G K H Madsen and L D Marks J. Chem. Phys. 152 074101 (2020)
J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)
P Blaha, K Schwarz and P Herzig J. Phys. Rev. Lett. 54 1192 (1985)
B Winkler, P Blaha and K Schwarz American Mineralogist 81 545 (1996)
P L Bryant and C R Harvell J. Phys. Chem. 103 5246 (1999)
M Iglesias, K Schwarz, P Blaha and D Baldomir J. Phys. Chem. Mineral 28 67 (2001)
T J Bastow J. Phys. Chem. Phys. Lett. 354 156 (2002)
S E Ashbrook and D Mckay J. Chem. Commun 52 7186 (2016)
T J Bastow, M I Burgar and C Maunders J. Solid State Communications 122 629 (2002)
R Siegel, J Hirschinger, D Carlier, M Menetrier and C Delmas J. Solid State Nuclear Magnetic Resonance 23 243 (2003)
T J Bastow J. Chem. Phys. Lett. 380 516 (2003)
T J Bastow and G W West J. Phys. Condens. Matter 15 8389 (2003)
P A Thomas, A Baldwin, R Dupree, P Blaha and K Schwarz J. Phys. Chem. B. 108 4324 (2004)
G Silly, C Legein, J Y Buzare and F Calvayrac J. Solid State Nuclear Magnetic Resonance. 25 241 (2004)
B Znou, T Giavani, H Bildsoe, J Skibsted and H J Jakobsen J. Chem. Phys. Lett. 402 133 (2005)
M R Hansen, G K H Madson, H J Jakobsen and J Skibsted J. Chem. Phys. Lett. 109 1989 (2005)
J B D’ Espinose de Lacaillerie, F Barberson, K V Romanenko, O B Lapina, L Le Polles, R Gautiier and Z Gan. J. Phys. Chem. B 109 14033 (2005)
M Body, G Silly, C Legein, J-Y Buzare, F Calvayrac and P Blaha J. Solid State Chem. 178 3655 (2005)
K J Ooms, K W Feindel, M J Willans and R E Wasylishen J. Solid State Nuclear Magnetic Resonance 28 125 (2005)
X Rocquefelte and S E Boulfelfel Angew. Chem. Int. Ed. 44 7542 (2005)
S E Ashbrook, L Le Polles, R Gautier, C J Pickard and R I Walton J. Phys. Chem. Chem. Phys. 8 3423 (2006)
M Body, G Silly, C Legein, J-Y Buzare, F Calvayrac and P Blaha J. Chem. Phys. Lett. 8 3423 (2006)
M R Hansen, G K H Madsen, H J Jakobsen and J Skibsred J. Phys. Chem. B 110 5975 (2006)
C Martineau, M Body, C Legein, G Silly, J-Y Buzare and F Fayon Inorg. Chem. 45 10215 (2006)
B Zhou, B L Sherriff, J S Hartman and G Wy J. American Mineralogist. 92 34 (2007)
X Rocquefelte, F Clabau, M Faris, P Deniard and T Le Mercier Inorg. Chem. 46 5456 (2007)
R Laskowski and P Blaha J. Phys. Chem. 119 19390 (2021)
R Bjornson, H Fruchtl and M Buhl J. Phys. Chem. Chem. Phys. 13 619 (2011)
M Bashi and H A Rahnamaye Magnetic Resonance in Chemistry 58 223 (2020)
M Bashi Solid State Nuclear Magnetic Resonance 82 10 (2017)
M Bashi J. Mol. Struct. 1148 223 (2017)
D J Cirilo-Lombardo Philosophical Magazine 95 1007 (2015)
J Olchowka, M Colmont, H Kabbour and O Mentre J. Alloys and Compounds 709 373 (2017)
A Bhim, Sh Sasmal, J Gopalakrishnan and S Natarajan. Chemistry–An Asian Journal 15 3104 (2020)
J Galy, R Enjalbert and G Jugil J. Solid State Chemistry 47 143 (1983)
C Diaz, G Barrera, M Segovia, M L Valenzuela, M Osiak and C Dwyer J. Nanomaterials Vol. 105157 (2015)
Acknowledgements
We thank Prof. Blaha from Vienna University of Technology, Austria, for his help in the use of Wien2k.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amiri-Shookoh, F., Aliabad, H.A.R. & Tavakoli-Anbaran, H. Comparative DFT calculations on Bismuth-based compounds: new connection between optoelectronic properties and 209Bi and 51 V NMR and EFG. Indian J Phys 97, 797–807 (2023). https://doi.org/10.1007/s12648-022-02458-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12648-022-02458-1