Skip to main content
Log in

Relativistic k-fields with massless soliton solutions in \(3+1\) dimensions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the relativistic non-standard Lagrangian densities (k-fields) with massless solutions are generally introduced. Such solutions are not necessarily energetically stable. However, in \(3+1\) dimensions, we introduce a new k-field model that results in a single non-topological massless solitary wave solution. This special solution is energetically stable; that is, any arbitrary deformation above its background leads to an increase in the total energy. In other words, its energy is zero which is the least energy in all solutions. Hence, it can be called a massless soliton solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that we set the speed of light to one (c = 1) throughout the paper for the sake of simplicity.

References

  1. R Rajaraman Solitons and Instantons (Amsterdam North Holland: Elsevier) (1982)

    MATH  Google Scholar 

  2. N Manton and P Sutcliffe Topological Solitons (Cambridge University Press) (2004)

    Book  MATH  Google Scholar 

  3. A A Izquierdo, J Queiroga-Nunes and L M Nieto Phys. Rev. D 103 045003 (2021)

    Article  ADS  Google Scholar 

  4. M Mohammadi and R Dehghani Commun. Nonlinear Sci. Numer. Simul. 94 105575 (2021)

    Article  Google Scholar 

  5. D Bazeia, A R Gomes and F C Simas Eur. Phys. J. C 81 1 (2021)

    Article  Google Scholar 

  6. V A Gani, V Lensky and M A Lizunova J. High Energy Phys. 2015 147 (2015)

    Article  Google Scholar 

  7. T H R Skyrme Proc. R. Soc. A. 260 127 (1961)

    ADS  MathSciNet  Google Scholar 

  8. T H R Skyrme Nuclear Phys. 31 556 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  9. N S Manton, B J Schroers and M A Singer Commun. Math. Phys. 245 123 (2004)

    Article  ADS  Google Scholar 

  10. O L Battistel Braz. J. Phys. 34 742 (2004)

    Article  ADS  Google Scholar 

  11. G t Hooft Nuclear Phys. B 79 276 (1974)

    Article  ADS  Google Scholar 

  12. A M Polyakov JETP Lett. 20 430 (1974)

    Google Scholar 

  13. S Nishino, R Matsudo, M Warschinke and K I Ondo Prog. Theor. Exp. Phys. 2018 103B04 (2018)

    Article  Google Scholar 

  14. M Eto, Y Hirono, M Nitta and S Yasui Prog. Theor. Exp. Phys. 2014 012D01 (2014)

    Article  Google Scholar 

  15. A R Seadawy and D Lu Phys. Rev. E 94 823 (2020)

    Google Scholar 

  16. Z Korpinar, M Inc, B Almohsen and M Bayram Indian J. Phys. 95 2143 (2021)

    Article  ADS  Google Scholar 

  17. H Sakaguchi and B A Malomed Phys. Rev. E 72 046610 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. M Mirzazadeh, M Eslami and A H Arnous Eur. Phys. J. Plus 130 1 (2015)

    Article  Google Scholar 

  19. M Younis and S T R Rizvi J. Nanoelectron. Optoelectron. 10 179 (2015)

    Article  Google Scholar 

  20. E C Aslan and M Inc Optik 196 162661 (2019)

    Article  ADS  Google Scholar 

  21. W X Ma and M Chen Appl. Math. Comput. 215 2835 (2009)

    MathSciNet  Google Scholar 

  22. M Savescu, K R Khan, P Naruka, H Jafari, L Moraru and A Biswas J. Comput. Theor. Nanosci. 10 1182 (2013)

    Article  Google Scholar 

  23. X Liu, H Zhang and W Liu Appl. Math. Model. 102 305 (2022)

    Article  MathSciNet  Google Scholar 

  24. G Ma, J Zhao, Q Zhou, A Biswas and L Liu Nonlinear Dyn. 106 2479 (2021)

    Article  Google Scholar 

  25. L L Wang and W J Liu Chin. Phys. B 29 070502 (2020)

    Article  ADS  Google Scholar 

  26. Y Y Yan and W J Liu Chin. Phys. Lett. 38 094201 (2021)

    Article  ADS  Google Scholar 

  27. L Wang, Z Luan, Q Zhou, A Biswas, A K Alzahrani and W Liu Nonlinear Dyn. 104 2613 (2021)

    Article  Google Scholar 

  28. H Wang, Q Zhou, A Biswas and W Liu Nonlinear Dyn. 106 841 (2021)

    Article  Google Scholar 

  29. G Ma, Q Zhou, W Yu, A Biswas and W Liu Nonlinear Dyn. 2509 106 (2021)

    Google Scholar 

  30. T Y Wang, Q Zhou and W J Liu Chin. Phys. B 31 020501 (2022)

    Article  ADS  Google Scholar 

  31. A M Wazwaz Chaos Solitons Fractals 37 1136 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Y Zhou, M Wang and T Miao Phys. Lett. A 323 77 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. N Mahak and G Akram Eur. Phys. J. Plus 134 1 (2019)

    Article  Google Scholar 

  34. M M El-Borai, H M El-Owaidy, H M Ahmed and A H Arnous Nonlinear Sci. Lett. A 8 32 (2017)

    Google Scholar 

  35. K M Li Indian J. Phys. 88 93 (2014)

    Article  ADS  Google Scholar 

  36. J Akter, N A Chowdhury, A Mannan and A A Mamun Indian J. Phys. 95 2837 (2021)

    Article  ADS  Google Scholar 

  37. S A El-Tantawy, S A Shan, N Akhtar and A T Elgendy Chaos Solitons Fractals 113 356 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. M S Ruderman, T Talipova and E Pelinovsky J. Plasma Phys. 74 639 (2008)

    Article  ADS  Google Scholar 

  39. P Eslami and M Mottaghizadeh Indian J. Phys. 88 521 (2014)

    Article  ADS  Google Scholar 

  40. G Rowlands, P Rozmej, E Infeld and A Karczewska Eur. Phys. J. E 49 1 (2017)

    Google Scholar 

  41. M K Brun and H Kalisch Anal. Math. Phys. 8 57 (2018)

    Article  MathSciNet  Google Scholar 

  42. Z Emami and H R Pakzad Indian J. Phys. 85 1643 (2011)

    Article  ADS  Google Scholar 

  43. M Wang Phys. Lett. A 213 (1996)

  44. H X Ge, R J Cheng and S Q Dai Phys. A Stat. Mech. Appl. 357 466 (2005)

    Article  Google Scholar 

  45. D Bazeia, L Losano, M A Marques and R Menezes Phys. Lett. B 765 359 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  46. D Bazeia, L Losano, M A Marques, R Menezes and R da Rocha Phys. Lett. B 758 146 (2016)

    Article  ADS  Google Scholar 

  47. A G Panin and M NmSmolyakov Phys. Rev. D 95 065006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. A Kovtun, E Nugaev and A Shkerin Phys. Rev. D 98 096016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  49. M N Smolyakov Phys. Rev. D 97 045011 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  50. M I Tsumagari, E J Copeland and P M Saffin Phys. Rev. D 78 065021 (2008)

    Article  ADS  Google Scholar 

  51. M N Smolyakov Phys. Rev. D 100 045002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  52. G H Derrick J. Math. Phys. 5 1252 (1964)

    Article  ADS  Google Scholar 

  53. M Mohammadi and R Gheisari Physica Scripta 95 015301 (2019)

    Article  ADS  Google Scholar 

  54. M Mohammadi Ann. Phys. 414 168099 (2020)

    Article  Google Scholar 

  55. M Mohammadi Physica Scripta 95 045302 (2020)

    Article  ADS  Google Scholar 

  56. M Mohammadi Ann. Phys. 422 168304 (2020)

    Article  Google Scholar 

  57. D Bazeia, L Losano, R Menezes and J C R E Oliveira Eur. Phys. J. C 51 953 (2007)

    Article  ADS  Google Scholar 

  58. C Adam, J Sanchez-Guillen and A Wereszczyński J. Phys. A: Math. Theor. 40 13625 (2007)

    Article  ADS  Google Scholar 

  59. E Babichev Phys. Rev. D 74 085004 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  60. V I Arnold Mathematical Methods of Classical Mechanics, vol 60 (New York: Springer) (2013)

    Google Scholar 

  61. Z E Musielak J. Phys. A: Math. Theor. 41 055205 (2008)

    Article  ADS  Google Scholar 

  62. Z E Musielak, D Roy and L D Swift Chaos Solitons Fractals 38 894 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  63. Z E Musielak Chaos Solitons Fractals 42 2645 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  64. A R El-Nabulsi Indian J. Phys. 87 379 (2013)

    Article  ADS  Google Scholar 

  65. R A El-Nabulsi Nonlinear Dyn. 74 381 (2013)

    Article  Google Scholar 

  66. R A El-Nabulsi Nonlinear Dyn. 79 2055 (2015)

    Article  MathSciNet  Google Scholar 

  67. R A El-Nabulsi Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. 85 247 (2015)

    Article  MathSciNet  Google Scholar 

  68. R A El-Nabuls Qual. Theory Dyn. Syst. 12 273 (2013)

    Article  MathSciNet  Google Scholar 

  69. R A El-Nabulsi Appl. Math. Lett. 43 120 (2015)

    Article  MathSciNet  Google Scholar 

  70. J Song and Y Zhang Acta Mechanica 229 285 (2018)

    Article  MathSciNet  Google Scholar 

  71. Y Zhou and X S Zhou Nonlinear Dyn. 84 1867 (2016)

    Article  Google Scholar 

  72. J F Cariñena and J Fernández Núñez Nonlinear Dyn. 83 457 (2016)

    Article  Google Scholar 

  73. J F Cariñena and J Fernández Núñez Nonlinear Dyn. 86 1285 (2016)

    Article  Google Scholar 

  74. R A El-Nabulsi Tbilisi Math. J. 9 279 (2016)

    Article  MathSciNet  Google Scholar 

  75. A R El-Nabulsi Math. Sci. 9 173 (2015)

    Article  MathSciNet  Google Scholar 

  76. Y Zhang and X P Wang Symmetry 11 1061 (2019)

    Article  ADS  Google Scholar 

  77. N A Kudryashov and D I Sinelshchikov Appl. Math. Lett. 63 124 (2017)

    Article  MathSciNet  Google Scholar 

  78. J F Cariñena and P Guha Int. J. Geom. Methods Mod. Phys. 16 1940001 (2019)

    Article  MathSciNet  Google Scholar 

  79. J F Carinena, M F Ranada and M Santander J. Math. Phys. 46 062703 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  80. V K Chandrasekar and S N Senthilvelan J. Math. Phys. 47 023508 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  81. A Saha and B Talukdar Talukdar Rep. Math. Phys. 73 299 (2014)

    Article  ADS  Google Scholar 

  82. R A El-Nabulsi Indian J. Phys. 87 379 (2013)

    Article  ADS  Google Scholar 

  83. R A El-Nabulsi Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. 83 383 (2013)

    Article  Google Scholar 

  84. R A El-Nabulsi Indian J. Phys. 87 465 (2013)

    Article  ADS  Google Scholar 

  85. R A El-Nabulsi Zeitschrift Für Naturforschung 71 817 (2016)

    Article  ADS  Google Scholar 

  86. C Armendáriz-Picón, T Damour and V I Mukhanov Phys. Lett. B 458 209 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  87. T Chiba, T Okabeand and M Yamaguchi Phys. Rev. D 62 023511 (2000)

    Article  ADS  Google Scholar 

  88. C Armendariz-Picon, V Mukhanov and P J Steinhardt Phys. Rev. Lett. 85 4438 (2000)

    Article  ADS  Google Scholar 

  89. R A El-Nabulsi J. Korean Phys. Soc. 79 345 (2021)

    Article  ADS  Google Scholar 

  90. C Armendariz-Picon and E A Lim J. Cosmol. Astroparticle Phys. 2005 007 (2005)

    Article  Google Scholar 

  91. T Padmanabhan and T R Choudhury Phys. Rev. D 66 081301 (2002)

    Article  ADS  Google Scholar 

  92. S Renaux-Petel and G Tasinato J. Cosmol. Astroparticle Phys. 2009 012 (2009)

    Google Scholar 

  93. A I Alekseev and B A Arbuzov Theor. Math. Phys. 59 372 (1984)

    Article  Google Scholar 

  94. R A El-Nabulsi Commun. Theor. Phys. 69 233 (2018)

    Article  ADS  Google Scholar 

  95. R A El-Nabulsi Proc. R. Soc. A 476 20200190 (2020)

    Article  ADS  Google Scholar 

  96. R A El-Nabulsi J. Theor. Appl. Phys. 7 58 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to the Persian Gulf University Research Council for their constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Gheisari, R. Relativistic k-fields with massless soliton solutions in \(3+1\) dimensions. Indian J Phys 97, 1147–1157 (2023). https://doi.org/10.1007/s12648-022-02451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02451-8

Keywords

Navigation