Skip to main content
Log in

Synthesis of superheavy elements using krypton and argon beams

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have studied all possible argon- and krypton-induced fusion reactions to synthesize superheavy nuclei in the atomic number range 100 ≤ Z ≤ 126. The effects such as extra push and extra-extra push in the fusion of two nuclei are included in the present work. The theoretical formalism used in the present work is validated by comparing with the available experiments. Kr-induced fusion reactions produces production cross sections of the order of nanobarns (nb), whereas Ar-induced fusion reactions produces evaporation residue cross sections of the order of picobarns (pb). This may be due to the fact that 86Kr is an almost spherical and magic nucleus. We have selected the almost spherical projectile and target combinations such as 84Kr + 207Bi, 84Kr + 208Bi, 84Kr + 209Bi, 86Kr + 207Bi, 86Kr + 208Bi, 86Kr + 209Bi, 86Kr + 208Po and 86Kr + 209Po to synthesize the superheavy elements Z = 119, 120, 124 and 126. The suggested projectile–target combinations are useful to synthesize the superheavy nuclei and hence extends the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J H Hamilton, S Hofmann and Y T Oganessian Annu Rev Nuclear Particle Sci 63 383 (2013)

  2. Y T Oganessian et al. Phys Rev C 72 034611 (2005)

  3. Y T Oganessian et al. Nature 400 242 (1999)

  4. Y T Oganessian, V K Utyonkov and K J Moody Phys Atomic Nuclei 64 1349 (2001)

  5. Y T Oganessian et al. Phys Rev Lett 104 142502 (2010)

  6. Y T Oganessian and V K Utyonkov Rep Progress Phys 78 036301 (2015)

  7. H Gauvin, Y Le Beyec, M Lefort and C Deprun Phys Rev Lett 28 697 (1972)

    Article  ADS  Google Scholar 

  8. H H Gutbrod, W G Winn and M Blann Phys Rev Lett 30 1259 (1973)

    Article  ADS  Google Scholar 

  9. F Hanappe, C M Lefort, J Ngo and B Tamain Phys Rev Lett 32 738 (1974)

    Article  ADS  Google Scholar 

  10. G G Adamian, N V Antonenko and W Scheid Phys Rev C 69 044601 (2004)

  11. B B Back, H Esbensen, C L Jiang and K E Rehm Rev Modern Phys 86 317 (2014)

    Article  ADS  Google Scholar 

  12. Y T Oganessian et al. In Exotic Nuclei: EXON-2001, 21–33. World Scientific (2002)

  13. V K Y Oganessian et al. Prog Theor Phys Suppl 154 406 (2004)

  14. Y T Oganessian et al. Phys Rev C74 044602 (2006)

  15. M Tea et al. Eur Phys J A 52 113 (2016)

  16. G N Flerov and G M Ter-Akopian Prog Particle Nuclear Phys 19 197 (1987)

    Article  ADS  Google Scholar 

  17. G Münzenberg, W Faust, S Hofmann, P Armbruster, K Güttner and H Ewald Nuclear Instrum Methods 161 65 (1979)

  18. S Hofmann, W Faust, G Münzenberg, W Reisdorf, P Armbruster, K Güttner and H Ewald Zeitschrift für Physik A Atoms Nuclei 291 53 (1979)

  19. Y T Oganessian et al. Phys Rev C 70 064609 (2004)

  20. Y T Oganessian et al. Phys Rev C 62 041604 (2000)

  21. Y T Oganessian et al. Phys Rev C 69 021601 (2004)

  22. N D Sergey et al. Mendeleev Commun 15 1 (2005)

  23. N J Stoyer et al. Nuclear Phys A 787 388 (2007)

  24. Y T Oganessian et al. Phys Rev C63 011301 (2000)

  25. Robert S Phys Rev C 63 044607 (2001)

  26. K N Sridhar, H C Manjunatha and H B Ramalingam Nuclear Phys A 983 195 (2019)

    Article  ADS  Google Scholar 

  27. H C Manjunatha, K N Sridhar and N Sowmya Nuclear Phys A 987 382 (2019)

    Article  ADS  Google Scholar 

  28. H C Manjunatha and K N Sridhar Nuclear Phys A 962 7 (2017)

    Article  ADS  Google Scholar 

  29. N Sowmya and H C Manjunatha Braz J Phys 49 874 (2019)

    Article  ADS  Google Scholar 

  30. H C Manjunatha, K N Sridhar and N Sowmya Phys Rev C 98 024308 (2018)

  31. K N Sridhar, H C Manjunatha and H B Ramalingam Phys Rev C 98 064605 (2018)

  32. N Sowmya and H C Manjunatha Bulg J Phys 46 16 (2019)

    Google Scholar 

  33. N Sowmya and H C Manjunatha Phys Particles Nuclei Lett 17 370 (2020)

    Article  ADS  Google Scholar 

  34. H C Manjunatha N Sowmya, N Manjunatha, P S Damodara, G L Seenappa, K N Sridhar, T Ganesh and T Nandi Phys Rev C 102 064605 (2020)

  35. H C Manjunatha, L Seenappa, P S Damodara, G N Manjunatha, K N Sridhar, N Sowmya and T Nandi Phys Rev C 103 024311 (2021)

  36. U Mosel and W Greiner Zeitschrift für Physik A Hadrons Nuclei 222 261 (1969)

  37. F P Heßberger et al. Eur Phys J A-Hadrons Nuclei 12 57 (2001)

  38. N Wang, K Zhao, W Scheid and W Xizhen Phys Rev C 77 014603 (2008)

  39. P S Gupta, H C Manjunatha and N Sowmya Braz J Phys 51 1803 (2021)

    Article  ADS  Google Scholar 

  40. H C Manjunatha, K N Sridhar, N Nagaraja and N Sowmya Eur Phys J Plus 133 227 (2018)

    Article  Google Scholar 

  41. H C Manjunatha, L Seenappa, N Sowmya and K N Sridhar Can J Phys 99 16 (2021)

    Article  ADS  Google Scholar 

  42. W Reisdorf and M Schädel Zeitschrift für Physik A Hadrons Nuclei 343 47 (1992)

    Article  ADS  Google Scholar 

  43. V I Zagrebaev et al. NRV video project. http://nrv.jinr.ru/nrv/webnrv/evaporation_residue_theory/description/Decay%20of%20excited%20nuclei.pdf

  44. Nuclear Vodeo Project. https://http://nrv.jinr.ru/nrv/webnrv/fusion.html

  45. S Bjørnholm and W J Swiatecki Nuclear Phys A 391 471 (1982)

  46. W J Swiatecki Nuclear Phys A 376 275 (1982)

  47. H Morgenstern, W Bohne, W Galster and K Grabisch Zeitschrift für Physik A Atomic Nuclei 324 443 (1986)

    Article  ADS  Google Scholar 

  48. R Billerey, C Cerniti, A Chevarier, N Chevarier, B Cheynis, A Demeyer and O Zohni Zeitschrift für Physik A Atoms Nuclei 297 317 (1980)

    Article  ADS  Google Scholar 

  49. A Fahli et al. Phys Rev C 34 161 (1986)

  50. B Tamain, C Ngô, J Péter and F Hanappe Nuclear Phys A 252 187 (1975)

  51. C Cabot et al. Nuclear Phys A 427 173 (1984)

  52. H C Britt, B H Erkkila, R H Stokes, H H Gutbrod, F Plasil, R L Ferguson and M Blann Phys Rev C 13 1483 (1976)

    Article  ADS  Google Scholar 

  53. W Reisdorf et al. Phys Rev Lett 49 1811 (1982)

    Article  ADS  Google Scholar 

  54. D Logan, H Delagrange, M F Rivet, M Rajagopalan, J M Alexander, M Kaplan, M S Zisman and E Duek Phys Rev C 22 1080 (1980)

  55. W Reisdorf et al. Phys Rev Lett 49 1811 (1982)

  56. R G Stokstad, W Reisdorf, K D Hildenbrand, J V Kratz, G Wirth, R Lucas and J Poitou Zeitschrift für Physik A Atoms Nuclei 295 269 (1980)

    Article  ADS  Google Scholar 

  57. B Borderie et al. Zeitschrift für Physik A Atoms Nuclei 299 263 (1981)

  58. Z Zheng et al. Nuclear Phys A 422 447 (1984)

    Article  ADS  Google Scholar 

  59. J Péter, C Ngô and B Tamain Nuclear Phys A 250 351 (1975)

  60. J Carter et al. Zeitschrift für Physik A Atoms Nuclei 313 57 (1983)

    Article  ADS  Google Scholar 

  61. H Gauvin, D Guerreau, Y Le Beyec, M Lefort, F Plasil and X Tarrago Physi Lett B 58 163 (1975)

    Article  ADS  Google Scholar 

  62. S D Negra, H Gauvin, H Jungclas, Y L Beyec and M Lefort Zeitschrift für Physik A Atoms Nuclei 282 75 (1977)

  63. W Reisdorf et al. Nuclear Phys A 438 212 (1985)

    Article  ADS  Google Scholar 

  64. H Delagrange et al. Phys Rev Lett 43 1490 (1979)

  65. F P Hessberger, V Ninov, D Ackermann and A Lüttgen Nuclear Phys A 568 121 (1994)

  66. F Plasil, R L Ferguson, H C Britt, B H Erkkila, P D Goldstone, R H Stokes and H H Gutbrod Phys Rev C 18 2603 (1978)

    Article  ADS  Google Scholar 

  67. W Reisdorf et al. Nuclear Phys A 444 154 (1985)

    Article  ADS  Google Scholar 

  68. G G Adamian, N V Antonenko, W Scheid and V V Volkov Nuclear Phys A 633 409 (1998)

    Article  ADS  Google Scholar 

  69. M Dahlinger, D Vermeulen and K-H Schmidt Nuclear Phys A 376 94 (1982)

    Article  ADS  Google Scholar 

  70. G G Adamian, N V Antonenko and W Scheid Phys Rev C 69 011601 (2004)

  71. S Mitsuoka, H Ikezoe, K Nishio and J Lu Phys Rev C 62 054603 (2000)

  72. J Khuyagbaatar, A Yakushev, C E Düllmann, H Nitsche, J Roberto and D Ackermann L-L Andersson, M Asai (H Brand: M Block, et al) (2013)

  73. H Haba Nat Chem 11 10 (2019)

  74. J Khuyagbaatar, A Yakushev and E Dullmann H Nitsche, J Roberto (D Ackermann: L L Andersson, et al. GSI Scientific Report) (2013)

  75. Y T Oganessian et al. Phys Rev C 79 024603 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sowmya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, H.C., Sowmya, N., Gupta, P.S.D. et al. Synthesis of superheavy elements using krypton and argon beams. Indian J Phys 97, 869–877 (2023). https://doi.org/10.1007/s12648-022-02430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02430-z

Keywords

Navigation