Skip to main content
Log in

Generating self-excited and hidden attractors with complex dynamics in a memristor-based Jerk system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we report a special memristor-based Jerk system in which self-excited and hidden attractors can be generated by adjusting one decisive system parameter. With increasing the parameter from negative to positive, the system has a transition from unstable equilibriums to no equilibrium point, and thus leading to the occurrence of coexisting self-excited and hidden attractors in the modified Jerk system simultaneously. More interestingly, the memristor parameters play an important role in the coexistence of attractors and the formation of the Feigenbaum remerging trees, and these two dynamic behaviors can be found in both hidden and self-excited attractor regions. In addition, the study of state-switching proves that the memristor’s internal initial state is very sensitive to the system. In order to verify the complex dynamic behavior of the system, an analog circuit simulation based on Multisim is developed and two types of attractors and their coexisting attractors are successfully captured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L Chua IEEE. Trans. 18 507 (1971)

  2. Dmitri B Strukov, Gregory S Snider, Duncan R Stewart and R Stanley Williams Nature. 453 80 (2008)

  3. H R Lin, C H Wang, Q H Hong and Y C Sun IEEE. T. Circuits-li 67 3472 (2020)

    Google Scholar 

  4. Z Li, H Zhou, M Wang and M Ma Nonlinear. Dynam. 104 1455 (2021)

    Article  Google Scholar 

  5. Li Z and Zhou H Electron. Lett. (2021)

  6. Y Li, Z Li, M Ma and M Wang Multimed. Tools. Appl. 79 29161 (2020)

    Article  Google Scholar 

  7. R Zhang, D Zeng and S Zhong Appl. Math. Comput. 310 57 (2017)

    MathSciNet  Google Scholar 

  8. Y Zhang Inf. Sci. 547 307 (2021)

    Article  Google Scholar 

  9. Z Wen, Z Li and X Li Electron. Lett. 56 78 (2020)

    Article  ADS  Google Scholar 

  10. Z Wen, Z Li and X Li Chin. J. Phys. 66 327 (2020)

    Article  Google Scholar 

  11. H Dai, Z Zheng and H Ma Mech. Syst. Signal. Pr. 115 1 (2019)

    Article  Google Scholar 

  12. Z L Zhu, W Zhang, K W Wong and Y Hai Inform. Sci. 181 1171 (2011)

    Article  Google Scholar 

  13. S H Strogatz Comput. Phys. 8 532 (1994)

    Article  ADS  Google Scholar 

  14. Dong Y, Wang G, HC Iu, G Chen and L Chen Chaos. 30 103123 (2020)

  15. S Vaidyanathan, V T Pham, C K Volos, T P Le and V Y Vu J. Engineer. Sci. Tech. Rev. 8 205 (2014)

    Google Scholar 

  16. F Yu, K Rajagopal, A Khalaf, F E Alsaadi, F E Alsaadi and V T Pham European. Phys. J. 229 1279 (2020)

    Google Scholar 

  17. Campbell SA, Be?Lair J, Ohira T and J Milton Choas 5 640 (1995)

  18. N Stankevich and E Volkov Nonlinear. Dynam. 94 2455 (2018)

  19. C Hens, S K Dana and U Feudel Chaos. Inter. J. Nonlinear. Sci. 25 1607 (2015)

    Google Scholar 

  20. B C Bao, H Bao, N Wang, M Chen and Q Xu Chaos Soliton. Fract. 94 102 (2017)

    Article  ADS  Google Scholar 

  21. F Yuan, G Wang and X Wang Chaos. 26 507 (2016)

    Google Scholar 

  22. A Ab, B Kr and C Ajmk Phys. Lett. 383 1450 (2019)

    Article  MathSciNet  Google Scholar 

  23. V R F Signing, J Kengne and J R M Pone Chaos. Soliton. Fract. 118 187 (2019)

    Article  ADS  Google Scholar 

  24. B Bao, X Zhang, H Bao, P Wu, Z Wu and M Chen Chaos. Soliton. Fract. 122 69 (2019)

    Article  ADS  Google Scholar 

  25. Z Wei, W Zhang and M Yao Nonlinear. Dynam. 82 1251 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thanks to the National Key Research and Development Program of China (Grant Nos. 2018AAA0103300) and National Natural Science Foundation of China (Grant Nos. 62071411) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Li, Z., Ma, M. et al. Generating self-excited and hidden attractors with complex dynamics in a memristor-based Jerk system. Indian J Phys 97, 187–201 (2023). https://doi.org/10.1007/s12648-022-02392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02392-2

Keywords

Navigation