Skip to main content
Log in

The investigation of orientation angle effect of random elliptical obstacles on permeability and tortuosity in porous media using Image Processing technique and Lattice Boltzmann Method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this numerical study, the fluid flow through fluid-saturated porous media with random elliptical obstacles was simulated using the Two Relaxation Times mode and D2Q9 model of second discretization version of Lattice Boltzmann Method. For the generation of porous media and geometrical calculations, the Image Processing technique was applied. The mathematical programs were validated by the calculation of hydrodynamic entrance length for the developing Poiseuille flow between two fixed parallel flat plates. Also, another validation was executed regarding the satisfaction of continuity equation for fluid flow through porous media. The results obtained from these two validations confirmed the existence of very good precision for calculations. Besides, with using Darcy’s law, the dimensionless permeability was calculated and the variation of it with respect to aspect ratio was explored. The effect of orientation angle (θ) and rotation of elliptical obstacles on the properties of porous media such as dimensionless permeability and streamline-based tortuosity was completely investigated. The streamline-based tortuosity as a function of porosity was also surveyed in this work. With the help of a novel algorithm, written in C language, the stream functions were calculated and the streamlines and also the velocity vectors in various porous media were depicted, too.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Area of channel cross section (m2)

a :

Large radius of ellipse (m)

A P :

Area of particle (m2)

A.R.:

Aspect ratio of ellipse

b :

Small radius of ellipse (m)

D h :

Hydraulic diameter (m)

H :

Distance between two walls of channel (m)

K :

Permeability (m2)

K′ :

Normalized (dimensionless) permeability

L e :

Entrance length (m)

L e * :

Dimensionless entrance length

L P :

Particle hydraulic diameter (m)

lu:

Lattice unit (LBM unit for length)

M :

Molar mass (kg/mol)

m :

Total number of streaming nodes in channel

Ma:

Mach number

n :

Number of fluid nodes at each cross section of channel

p :

Perimeter of particle (m)

\({\bar{P}}_{{in}}\) :

Fluid mean pressure at inlet cross section of porous medium (Pa)

\({\bar{P}}_{{out}}\) :

Fluid mean pressure at outlet cross section of porous medium (Pa)

R :

Universal gas constant (J/(mol K))

Re:

Reynolds number

ReH :

Reynolds number based on distance H

S P :

Sphericity of particle

\(\bar{S}_{P}\) :

Mean sphericity of particle

T :

Thermodynamic absolute temperature (K)

t :

Time (s)

u :

Fluid velocity (m/s)

\(\bar{u}_{{in}}\) :

Fluid mean velocity at inlet cross section of porous medium (m/s)

\(\bar{u}_{{out}}\) :

Fluid mean velocity at outlet cross section of porous medium (m/s)

u x :

Fluid velocity along x-axis (m/s)

V P :

Volume of particle (m3)

V pore :

Pore volume of porous medium (m3)

V solid :

Solid volume of porous medium (m3)

x :

Coordinate parallel with flow direction (m)

y :

Coordinate perpendicular to flow direction (m)

P :

Pressure drop (Pa)

θ :

Orientation angle (degree)

μ :

Fluid dynamic viscosity (Pa s)

ν :

Fluid kinematic viscosity (m2/s)

ρ :

Fluid density (kg/m3)

\(\tau\) :

Velocity-based tortuosity

\(\bar{\tau}\) :

Streamline-based tortuosity

ϕ :

Porosity

in:

Inlet

out:

Outlet

LBM:

Lattice Boltzmann Method

SI:

International System

º:

Degree

References

  1. W Kast and C R Hohenthanner Int. J. Heat Mass Transf. 43 807 (2000)

    Article  Google Scholar 

  2. J Bernsdorf, G Brenner and F Durst Comput. Phys. Commun 129 247 (2000)

    Article  Google Scholar 

  3. R W Mair, M D Hürlimann, P N Sen, L M Schwartz, S Patz and R L Walsworth Magn. Reson. Imag. 19 345 (2001)

    Article  Google Scholar 

  4. T D Papathanasiou, E M Gravel, S C Barwick and E D Dendy Polym. Compos. 23 520 (2002)

    Article  Google Scholar 

  5. Z E A Fellah, S Berger, W Lauriks, C Depollier, C Aristégui and J Y Chapelon J. Acoust. Soc. Am. 113 2424 (2003)

    Article  Google Scholar 

  6. Y Bo-Ming and L Jian-Hua Chin. Phys. Lett. 21 1569 (2004)

    Article  Google Scholar 

  7. A P Deshpande, A Srikanth and N Praveen Can. J. Chem. Eng. 83 808 (2005)

    Article  Google Scholar 

  8. M Barrande, R Bouchet and R Denoyel Anal. Chem. 79 9115 (2007)

    Article  Google Scholar 

  9. L Shen and Z Chen Chem. Eng. Sci. 62 3748 (2007)

    Article  Google Scholar 

  10. C Zhao, B E Hobbs, A Ord, S Peng and L Liu Math. Geosci. 40 179 (2008)

    Article  Google Scholar 

  11. F Jiang and A C M Sousa Transp. Porous Media 75 17 (2008)

    Article  MathSciNet  Google Scholar 

  12. P Xu and B Yu Adv. Water Resour. 31 74 (2008)

    Article  Google Scholar 

  13. A Nabovati, E W Llewellin and A C M Sousa Compos Part A 40 860 (2009)

    Article  Google Scholar 

  14. E Lemarchand, C A Davy, L Dormieux and F Skoczylas Transp. Porous Media 84 1 (2009)

    Article  Google Scholar 

  15. Z Chai, B Shi, J Lu and Z Guo Comput. Fluids 39 2069 (2010)

    Article  MathSciNet  Google Scholar 

  16. R Vallabh, P Banks-Lee and A F Seyam J. Eng. Fibers Fabr. 5 7 (2010)

    Google Scholar 

  17. K Yazdchi, S Srivastava and S Luding Int. J. Multiphase Flow 37 956 (2011)

    Article  Google Scholar 

  18. A Duda, Z Koza and M Matyka Phys. Rev. E 84 036319 (2011)

    Article  Google Scholar 

  19. A S Ziarani and R Aguilera Transp. Porous Media 91 239 (2011)

    Article  Google Scholar 

  20. L Talon, D Bauer, N Gland, S Youssef, H Auradou and I Ginzburg Water Resour. Res. 48 W04526 (2012)

    Article  Google Scholar 

  21. J L Kou, X M Tang, H Y Zhang, H J Lu, F M Wu, Y S Xu and Y S Dong Chin. Phys. B 21 044701 (2012)

    Article  Google Scholar 

  22. X W Tang, Z F Sun and G C Cheng Chin. Phys. B 21 100201 (2012)

    Article  Google Scholar 

  23. A Pazdniakou and P M Adler Adv. Water Resour. 62 292 (2013)

    Article  Google Scholar 

  24. B Ghanbarian, A G Hunt, R P Ewing and M Sahimi Soil Sci. Soc. Am. J. 77 1461 (2013)

    Article  Google Scholar 

  25. X H Yang, T J Lu and T Kim J. Phys. D: Appl. Phys. 46 125305 (2013)

    Article  Google Scholar 

  26. G H Tang and Y B Lu Transp. Porous Media 104 435 (2014)

    Article  MathSciNet  Google Scholar 

  27. Y Matsumura, D Jenne and T L Jackson Phys. Fluids 27 023301 (2015)

    Article  Google Scholar 

  28. H Saomoto and J Katagiri Transp. Porous Media 107 781 (2015)

    Article  Google Scholar 

  29. B Wen, H Chen, Z Qin, B He and C Zhang Comput. Math. Appl. 78 1142 (2019)

    Article  MathSciNet  Google Scholar 

  30. L Pisani Transp. Porous Media 114 201 (2016)

    Article  MathSciNet  Google Scholar 

  31. M Ezzatabadipour, H Zahedi and M M Keshtkar J. Appl. Mech. Tech. Phys. 58 379 (2017)

    Article  MathSciNet  Google Scholar 

  32. S M R Niya and A P S Selvadurai Transp. Porous Media 121 741 (2017)

    Article  Google Scholar 

  33. M Ezzatabadipour and H Zahedi Eur. Phys. J. Plus 133 464 (2018)

    Article  Google Scholar 

  34. M Zecca, S J Vogt, P R J Connolly, E F May and M L Johns Transp. Porous Media 125 271 (2018)

    Article  Google Scholar 

  35. J Hommel, E Coltman and H Class Transp. Porous Media 124 589 (2018)

    Article  Google Scholar 

  36. M N Vu, A Pouya and D M Seyedi Adv. Water Resour. 118 1 (2018)

    Article  Google Scholar 

  37. R Schulz, N Ray, S Zech, A Rupp and P Knabner Transp. Porous Media 130 487 (2019)

    Article  MathSciNet  Google Scholar 

  38. M Ezzatabadipour and H Zahedi Transp. Porous Media 136 103 (2020)

    Article  Google Scholar 

  39. R Askari, M F Ikram and S H Hejazi Int. J. Numer. Methods Heat Fluid Flow 27 867 (2017)

    Article  Google Scholar 

  40. J R Welty, C E Wicks, R E Wilson and G L Rorrer Fundamentals of Momentum, Heat, and Mass Transfer, 5th edn. (USA: Wiley) (2008)

    Google Scholar 

  41. R W Fox, A T McDonald, P J Pritchard and J C Leylegian Introduction to Fluid Mechanics, 8th edn. (USA: Wiley) (2011)

    Google Scholar 

  42. M Jourabian, Darzi AA Rabienataj, OA Akbari and D Toghraie Physica A 548 123887 (2020)

  43. R Y Chen J. Fluids Eng. 95 153 (1973)

    Article  Google Scholar 

  44. J P du Plessis and M R Collins N&O Joernaal 25 11 (1992)

    Google Scholar 

  45. H Li, B Huang and M Wu Micromachines 10 317 (2019)

    Article  Google Scholar 

  46. J Wojtkowiak and C O Popiel J. Fluids Eng. 128 196 (2006)

    Article  Google Scholar 

  47. H Li, Y Li, B Huang and T Xu Micromachines 11 30 (2020)

    Article  Google Scholar 

  48. N B Carrigy, L M Pant, S Mitra and M Secanell J. Electrochem. Soc. 160 F81 (2012)

    Article  Google Scholar 

  49. S Hilmi and V George Energy Sour. 22 207 (2000)

    Article  Google Scholar 

  50. E Dumont, LM Ayala Guzman, MS Rodríguez Susa and Y Andrès J. Chem. Technol. Biotechnol. 87 725 (2012)

  51. LP de Faria Borges, RM de Moraes, S Crestana and ALB Cavalcante Int. J. Geomech. 19 04019088 (2019)

  52. A Abdelrasoul, H Doan, A Lohi and C-H Cheng Environ. Technol. 39 203 (2017)

    Article  Google Scholar 

  53. A Etiemble, J Adrien, E Maire, H Idrissi, D Reyter and L Roué Mater. Sci. Eng., B 187 1 (2014)

  54. H T Hamad, D W Abbood and A S Mustafa IOP Conf. Ser.: Mater. Sci. Eng. 454 012093 (2018)

    Article  Google Scholar 

  55. J Xu, Y Ding, L Yang, Z Liu, R Gao, H Yang and Z Wang J. Pet. Sci. Eng. 198 108235 (2021)

    Article  Google Scholar 

  56. T Krüger, H Kusumaatmaja, A Kuzmin, O Shardt, G Silva and E M Viggen The Lattice Boltzmann Method: Principles and Practice. (Switzerland: Springer) (2017)

  57. R E Larson and J J L Higdon J. Fluid Mech. 178 119 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Mohammad Ezzatabadipour expresses his especial gratitude to Mr. Hamid Zahedi for development of an efficient new algorithm for drawing streamlines from velocity vectors by a mathematical program written in the combination of C and MATLAB languages (MEX Function) and also, for utilizing Image Processing technique by MATLAB for LBM simulations.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Zahedi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzatabadipour, M., Zahedi, H. The investigation of orientation angle effect of random elliptical obstacles on permeability and tortuosity in porous media using Image Processing technique and Lattice Boltzmann Method. Indian J Phys 96, 4283–4299 (2022). https://doi.org/10.1007/s12648-022-02387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02387-z

Keywords

Navigation