Skip to main content

Advertisement

Log in

Structural, morphological, optical and electrical properties of yttrium-doped calcium strontium titanate prepared by solid-state reaction technique

  • Original Scientific Research
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Fine ceramics of calcium strontium titanate and yttrium-doped calcium strontium titanate having formula (YxCa0.50−xSr0.50)TiO3 where x = 0.0, 0.05, 0.10 and 0.15 have been prepared by using a solid-state reaction technique. Thermal analysis using thermogravimetric analysis and differential thermal analysis of the prepared material has been performed to determine the calcination temperature. Formation of desired well-crystalline material belonging to orthorhombic phase with space group as ‘Pnma’ was confirmed by using powder X-ray diffraction analysis. Surface morphology has been studied by scanning electron microscopy which shows the formation of irregular features with an average grain size lying in the range of 0.58 to 0.84 μm. The elemental composition of the prepared material was studied by using energy-dispersive X-ray analysis which shows the presence of all the major elements present in the prepared compositions. Ultraviolet–visible spectroscopic studies show that the bandgap of the prepared material lies in the range of 3.5 to 3.7 eV. Fourier transform infrared spectra show the presence of Ti–O stretching and Ti–O–Ti bending modes of vibration in the prepared material. The FT-Raman spectroscopy shows the presence of orthorhombic perovskite active modes such as Ca–TiO3 lattice mode, Ti–O3 torsional mode, O–Ti–O bending and Ti–O symmetric stretching vibrations. The dielectric constant (\(\varepsilon^{\prime }\)) with respect to frequency shows the contribution of electronic, ionic, dipolar and surface polarization for the high value of \(\varepsilon^{\prime }\) at low frequencies, and the temperature dependence of \(\varepsilon^{\prime }\) shows low-temperature phase transition as well for yttrium-doped calcium strontium titanate. The frequency dependence of ac conductivity follows the Mott relation which shows the increase in ac conductivity with the increase in frequency. Thus, such rare-earth-doped material can be used in the fabrication of high-frequency dielectric devices and microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E Grabowska Appl. Catal. B 186 97 (2016)

    Article  Google Scholar 

  2. X Huang, X Yan, H Wu, Y Fang, Y Min and W Li Nonferrous Met. Soc. China 26 464 (2016)

    Article  Google Scholar 

  3. A J Joseph and B Kumar Solid State Commun. 271 11 (2018)

    Article  ADS  Google Scholar 

  4. K Batra, N Sinha and B Kumar J. Mater. Sci.: Mater. Electron. 30 6157 (2019)

    Article  Google Scholar 

  5. A Sharma, N J Usharani and S S Bhattacharya Open Ceram. 6 100130 (2021)

    Article  Google Scholar 

  6. I M Pinatti, T M Mazzo, R F Goncalves, J A Varela, E Longo and I L V Rosa Ceram. Int. 42 1352 (2016)

    Article  Google Scholar 

  7. S Lanfredi, F Storti, L P M Simoes, E Djurado and M A L Nobre Mater. Lett. 201 148 (2017)

    Article  Google Scholar 

  8. C Bae J. Am. Ceram. Soc. 81 3005 (1998)

    Article  Google Scholar 

  9. P N Nirmala and G Suresh Int. J. Sci. Eng. Res. 5 587 (2014)

    Google Scholar 

  10. R Ranjan, D Pandey, W Schuddinck, O Richard and P D Meulenaere J. Solid State Chem. 162 20 (2001)

    Article  ADS  Google Scholar 

  11. S Qin, A I Becerro and F Seifert J. Mater. Chem. 10 1609 (2000)

    Article  Google Scholar 

  12. T Yamanaka Am. Mineral. 87 1183 (2002)

    Article  ADS  Google Scholar 

  13. O Jongprateep, N Sato, S Boonsalee and J Pee Mater. Today: Proc. 5 14992 (2018)

    Article  Google Scholar 

  14. J H Joshi, G H Joshi and M J Joshi J. Chem. 42 17227 (2018)

    Article  Google Scholar 

  15. M Fujimoto and T Suzuki J. Am. Ceram. Soc. 81 33 (1998)

    Article  Google Scholar 

  16. R Chen, F Song, D Chen and Y Peng Powder Technol. 194 252 (2009)

    Article  Google Scholar 

  17. V Vidyadharan, E Sreeja, S K Jose, C Joseph, N V Unnikrishnan and P R Biju Luminescence 31 202 (2016)

    Article  Google Scholar 

  18. X Wang, Y Tang, X He, P Qiu and Q He SPIE-Int. Soc. Opt. Eng. 7493 74936A-A74941 (2009)

    Article  ADS  Google Scholar 

  19. A C Eduardo and A T Figueiredo Ceram. Int. 40 15981 (2014)

    Article  Google Scholar 

  20. R Gupta and S Verma J. Ceram. 2015 835150 (2015)

    Article  Google Scholar 

  21. A Mahapatra, S Subudhi, S Swain, R Sahu and R R Negi Integr. Ferroelectr. 203 43 (2019)

    Article  ADS  Google Scholar 

  22. O Jongprateep and N Sato Mater. Sci. Eng. 2019 1612456 (2019)

    Article  Google Scholar 

  23. O P Shrivastava and R Srivastava Prog. Cryst. Growth Charact. Mater. 45 103 (2002)

    Article  Google Scholar 

  24. P Thakur, S J Khambadkar, A Patil and C M Dudhe J. Pure Appl. Phys. 56 853 (2018)

    Google Scholar 

  25. A K Zak, W H A Majid, M E Abrishami and R Yousefi Solid State Sci. 13 251 (2011)

    Article  ADS  Google Scholar 

  26. D Kumar, M Singh and A K Singh AIP Conf. Proc. 1953 030185 (2018)

    Article  Google Scholar 

  27. A H Shah and M A Rather Mater. Today: Proc. 44 482 (2021)

    Article  Google Scholar 

  28. N Saikumari, S M Dev and S A Dev Sci. Rep. 11 1 (2021)

    Article  ADS  Google Scholar 

  29. M N Rifaya Nanotechnol. 2 134 (2012)

    Article  Google Scholar 

  30. J Mioduska and Z Jurek J. Nanomater. 2016 3145912 (2016)

    Article  Google Scholar 

  31. X Tian, S Lian, C Ji, Z Huang, J Wen, Z Chen, H Peng, S Wang and J Li J. Alloys Compd. 784 628 (2019)

    Article  Google Scholar 

  32. P K Patel and K L Yadav Phys. B 442 39 (2014)

    Article  ADS  Google Scholar 

  33. E Silva, J V Nicolini, L Yamauchi Jr, T M Machado, M Curi and J G Furtado Ceram. Int. 46 3592 (2020)

    Article  Google Scholar 

  34. K Rai and K N Rao J. Alloys Compd. 475 316 (2009)

    Article  Google Scholar 

  35. W S Kim Res. Bull. 34 2309 (1999)

    Article  ADS  Google Scholar 

  36. K Hasnat, K Kamel, D Moudir and Y Mouheb Mater. Sci. 20 81 (2020)

    Article  Google Scholar 

  37. X Jin, D Sun and M Zhang J. Electroceram. 22 285 (2009)

    Article  Google Scholar 

  38. M A Islam J. Phys. Condens. Matter 25 175902 (2013)

    Article  ADS  Google Scholar 

  39. H Zheng, I M Reaney, G D C C de Gyorgyfalva, R Ubic and J Yarwood J. Mater. Res. 19 488 (2004)

    Article  ADS  Google Scholar 

  40. T Hirata J. Solid State Chem. 124 353 (1996)

    Article  ADS  Google Scholar 

  41. U Balachandran and N G Eror Solid State Commun. 44 815 (1982)

    Article  ADS  Google Scholar 

  42. S Sasidharan J. Lumin. 235 118048 (2021)

    Article  Google Scholar 

  43. S Kumar and V Luthra J. Phys. Chem. Solids 154 110079 (2021)

    Article  Google Scholar 

  44. I M Afandiyeva, I Dokme and S Altindal Microelectron. Eng. 85 247 (2008)

    Article  Google Scholar 

  45. A Tkach J. Phys. D: Appl. Phys. 48 085302 (2015)

    Article  ADS  Google Scholar 

  46. S Kumar Status Solidi A 215 1700710 (2018)

    Article  ADS  Google Scholar 

  47. R N P Chaudhary and D K Pradhan J. Alloys Compd. 437 220 (2007)

    Article  Google Scholar 

  48. A Dutta and T P Sinha Mater. Res. Bull. 46 518 (2011)

    Article  Google Scholar 

  49. A G Hunt Philos. Mag. B 81 875 (2001)

    Article  ADS  Google Scholar 

  50. N A Hegab and M A Afifi J. Alloys Compd. 477 925 (2009)

    Article  Google Scholar 

  51. S Amhil, E Choukri and S B Moumen Phys. B Condens. Matter 556 36 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank DST – SAIF KOCHI for providing the facilities of PXRD and SEM-EDAX. The authors are also highly thankful to SAIF, Indian Institute of Technology (IIT), Madras, for providing the facility of FT-Raman. The authors also acknowledge the help given to the laboratory under RUSA 2.0 and PURSE grants.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study of this problem. Material preparation, data collection and analysis were performed by Kumari Kanika Bhadwal, Bindu Raina and Sonali Thakur. The first draft of the manuscript was written by Kumari Kanika Bhadwal. Prof. K. K. Bamzai supervised and conceived the problem. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. K. Bamzai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadwal, K.K., Raina, B., Thakur, S. et al. Structural, morphological, optical and electrical properties of yttrium-doped calcium strontium titanate prepared by solid-state reaction technique. Indian J Phys 97, 85–104 (2023). https://doi.org/10.1007/s12648-022-02383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02383-3

Keywords

Navigation