Skip to main content
Log in

Thermodynamic product formulae for Reissner-Nordström-de Sitter black hole

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper aims to study the thermodynamic features of the Reissner-Nordström-de Sitter black hole through the inner and outer horizons. We calculate different thermodynamic products such as area product, horizon radii product, Bekenstein-Hawking entropy product, Hawking temperature product, surface gravity product, Komar energy product, irreducible mass product, and specific heat product on inner and outer horizons of Reissner-Nordström-de Sitter black hole. We have found that all product formulae are dependent on black hole mass, and hence, they are not universal quantities. Furthermore, the thermodynamic stability of Reissner-Nordström-de Sitter black holes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A G Riess et al. Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  2. D Astefanesei, R B Mann and E Radu J. High Energy Phys. 01 029 (2004)

    Article  ADS  Google Scholar 

  3. H M Manjunatha, S K Narasimhamurthy and Z Nekouee Int. J. Geom. Methods Mod. Phys. 17 2050069 (2020)

    Article  MathSciNet  Google Scholar 

  4. Y He, M-S Ma and R Zhao Nucl. Phys. B 930 513 (2018)

    Article  ADS  Google Scholar 

  5. B-B Wang and C-G Huang Class. Quantum Grav. 19 2491 (2002)

  6. L-C Zhang, R Zhao and M-S Ma Phys. Lett. B 761 74 (2016)

    Article  ADS  Google Scholar 

  7. M Cveti\(\check{\text{c}}\) and F Larsen Phys. Rev. D 56 4994 (1997)

  8. M Cveti\(\check{\text{c}}\) and F Larsen Nucl. Phys. B 506 107 (1997)

  9. M Cveti\(\check{\text{c}}\) and F Larsen J. High Energy Phys. 09 088 (2009)

  10. M Ansorg, J Hennig and C Cederbaum Gen. Relativ. Gravit. 43 1205 (2011)

    Article  ADS  Google Scholar 

  11. J Hennig and M Ansorg Ann. Henri Poincaré 10 1075 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. M Ansorg and J Hennig Phys. Rev. Lett. 102 221102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. J Hennig, C Cederbaum and M Ansorg Commun. Math. Phys. 293 449 (2010)

    Article  ADS  Google Scholar 

  14. M Ansorg and J Hennig Class. Quantum Grav. 25 222001 (2008)

    Article  ADS  Google Scholar 

  15. M Ansorg and H Pfister Class. Quantum Grav. 25 035009 (2008)

    Article  ADS  Google Scholar 

  16. J L Jaramillo, N Vasset and M Ansorg arXiv:0712.1741 (2007)

  17. X-H Meng, W Xu and J Wang Int. J. Mod. Phys. A 29 1450088 (2014)

    Article  ADS  Google Scholar 

  18. M Visser Phys. Rev. D 88 044014 (2013)

  19. J Wang, W Xu and X-h Meng J. High Energy Phys. 01 031 (2014)

    Article  ADS  Google Scholar 

  20. W Xu, J Wang and X-H Meng Int. J. Mod. Phys. A 29 1450172 (2014)

    Article  ADS  Google Scholar 

  21. Y-Q Du and Y Tian Phys. Lett. B 739 250 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. H E Stanley Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press) (1971)

  23. M W Zemansky and R H Dittman Heat and Thermodynamics (McGraw-Hill) (1997)

  24. Th M Nieuwenhuizen Phys. Rev. Lett. 79 1317 (1997)

  25. Th M Nieuwenhuizen J. Phys.: Condens. Matter 12 6543 (2000)

    ADS  Google Scholar 

  26. P C W Davies Proc. R. Soc. Lond. A 353 499 (1977)

  27. R Banerjee and S Gangopadhyay Gen. Relativ. Gravit. 43 3201 (2011)

    Article  ADS  Google Scholar 

  28. M A Anacleto, F A Brito and E Passos Phys. Lett. A 380 1105 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. A Castro et al. J. High Energy Phys. 07 164 (2013)

    Article  ADS  Google Scholar 

  30. A Castro and M J Rodriguez Phys. Rev. D 86 024008 (2012)

    Article  ADS  Google Scholar 

  31. M Cvetič, H L\(\ddot{\text{u}}\) and C N Pope Phys. Rev. D 88 044046 (2013)

  32. P Pradhan Phys. Lett. B 747 64 (2015)

  33. B Majeed, M Jamil and P Pradhan Adv. High Energy Phys. 2015 124910 (2015)

    Google Scholar 

  34. P Pradhan Eur. Phys. J. C 74 2887 (2014)

  35. P Pradhan Eur. Phys. J. C 81 859 (2021)

  36. P Pradhan Eur. Phys. J. C 76 131 (2016)

  37. P Pradhan Eur. Phys. J. C 81 896 (2021)

  38. A Sen Phys. Rev. Lett. 69 1006 (1992)

  39. M Cveti\(\check{\text{c}}\), G W Gibbons and C N Pope Phys. Rev. Lett. 106 121301 (2011)

  40. S Detournay Phys. Rev. Lett. 109 031101 (2012)

  41. S Deser, R Jackiw and S Templeton Ann. Phys. 140 372 (1982)

    Article  ADS  Google Scholar 

  42. A Mandal and R Biswas Astrophys. Space Sci. 361 39 (2016)

    Article  ADS  Google Scholar 

  43. X-P Li et al. arXiv:2104.02264 (2021)

  44. S Shaymatov, B Ahmedov and M Jamil Eur. Phys. J. C 81 588 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author, H M Manjunatha is very much grateful to Karnataka Science and Technology Promotion Society (KSTePS), Department of Science and Technology (DST), Govt. of Karnataka (Award Letter No. OTH-04: 2018-19), for awarding DST-PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Narasimhamurthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narasimhamurthy, S.K., Nekouee, Z. & Manjunatha, H.M. Thermodynamic product formulae for Reissner-Nordström-de Sitter black hole. Indian J Phys 97, 279–284 (2023). https://doi.org/10.1007/s12648-022-02363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02363-7

Keywords

Navigation