Skip to main content

Advertisement

Log in

Recombination and mobility analysis of voltage preserved type-A InP multiple quantum well GaInP solar cell

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The insertion of quantum well (QW) in intermediate band (IB) region enhances the short-circuit current (\({I}_{\mathrm{sc}}\)), in most of the IB solar cell (SC). But it results in open-circuit voltage (\({V}_{\mathrm{oc}}\)) degradation due to increased recombination. In this work, the type-A InP QW structure is designed in GaInP multiple QW solar cell with voltage preservation technique. The absorption of sub-bandgap energy enhances \({I}_{\mathrm{sc}}\) and slightly reduces the \({V}_{\mathrm{oc}}\). The bound state energy band diagram shows mini-band formation in QW region. The radiative recombination is a dominant factor in these mini bands. The performance of the solar cell increases up to 20 QW periods. After 20 QW periods, the reduction in overall performance of the solar cell is observed. This has been analyzed using recombination and mobility analysis. The highest \({I}_{\mathrm{sc}}\) = 20.76 mA/\({\mathrm{cm}}^{2}\) with \({V}_{\mathrm{oc}}\) = 1.41967 V results in superior efficiency of 24.51% for the designed solar cell. The effect of multiple QW periods in both quantum efficiencies (EQE and IQE) is analyzed, and the obtained \(\eta_{{{\text{EQE}}}}\) and \(\eta_{{{\text{IQE}}}} \) of the periodic QW model are well above 85%. The associated problems of performance degradation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W Shockley and H J Queisser Journal of Applied Physics 32 510 (1961)

    Article  Google Scholar 

  2. J F Geisz, M A Steiner, I Gracia and D J Friedman Applied Physics Letters 103 041118 (2013)

    Article  Google Scholar 

  3. Y A Chang, Z-Y Li et al Semiconductor Science and Technology 24 085007 (2009)

    Article  Google Scholar 

  4. A Benlekhdim, A Cheknane, L S Faxi and H S Hilal Optik 163 8 (2018)

    Article  Google Scholar 

  5. T Takamoto, E Ikeda, H Kurita and M Ohmori Solar Energy Materials and Solar Cells 35 25 (1994)

    Article  Google Scholar 

  6. M Verma, S Routray and G P Mishra, 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Malaysia, 1–4 (2020), https://doi.org/10.1109/EDTM47692.2020.9117863

  7. A Luque and A Marti Physical Review Letters 78 5014 (1997)

    Article  Google Scholar 

  8. A Marti et al Physics Review Letters 97 247701 (2006)

    Article  Google Scholar 

  9. G S Sahoo and G P Mishra Optik 199 163382 (2019)

    Article  Google Scholar 

  10. K W J Barnham and G Duggan Journal of Applied Physics 67 3490 (1990)

    Article  Google Scholar 

  11. S Tomi, T S Jones and N M Harrision Applied Physics Letters 93 263105 (2008)

    Article  Google Scholar 

  12. K Barnham et al Applied Surface Science 113 722 (1997)

    Article  Google Scholar 

  13. I Ramiro et al IEEE Journal of Photovoltaics 5 840 (2015)

    Article  Google Scholar 

  14. H Kum et al Applied Physics Letters 113 042902 (2019)

    Google Scholar 

  15. T Tayagaki and T Sugaya Applied Physics Letters 108 153901 (2016)

    Article  Google Scholar 

  16. G J Beirne et al Journal of Applied Physics 98 093522 (2005)

    Article  Google Scholar 

  17. T Aihara et al Japanese Journal of Applied Physics 57 08RF04-1 (2018)

    Google Scholar 

  18. J Porche et al Journal of Crystal Growth 195 591 (1998)

    Article  Google Scholar 

  19. M Verma and G P Mishra Optik 220 165113-1–8 (2020)

    Article  Google Scholar 

  20. G S Sahoo and G P Mishra IEEE Transaction on Electron Devices 66 153 (2019)

    Article  Google Scholar 

  21. Silvaco Inc., Silvaco ATLAS user’s manual, (2016)

  22. M R Lueck IEEE Electro Device Letters 27 142 (2006)

    Article  Google Scholar 

  23. I E Hashem et al Journal of applied Physics 119 095706 (2016)

    Article  Google Scholar 

  24. R F Pierret Advanced Semiconductor Fundamentals (United Kingdom: Pearson) second edition, G. W. Neudeck and R. F. Pierret 64–68 (2002)

  25. R P Raffaelle Nanostructured Materials for Solar Energy Conversion, (Elsevier Science) first edition T. Soga, 567 (2006)

  26. S Kotamrajua, M Sukeerthia and S E Puthanveettil Solar Energy 186 328 (2019)

    Article  Google Scholar 

  27. Ali Abolghasemi and Reza Kohandani Applied Optics 57 7045 (2018)

    Article  Google Scholar 

  28. A Martie et al Semiconductors 38 946 (2004)

    Article  Google Scholar 

  29. S P Bremner et al Applied Physics Letters 92 171110 (2008)

    Article  Google Scholar 

  30. G S Sahoo and G P Mishra Optik 212 164678 (2020)

    Article  Google Scholar 

  31. M Verma and G P Mishra Applied physics A 126 661 (2020)

    Article  Google Scholar 

  32. M Verma and G P Mishra Silicon (2021). https://doi.org/10.1007/s12633-021-01124-1

    Article  Google Scholar 

  33. M Verma and G P Mishra IEEE Sensors Journal 22 1273 (2022). https://doi.org/10.1109/JSEN.2021.3131770

    Article  Google Scholar 

  34. M Verma and G P Mishra Phys. Status Solidi A 129 2100448 (2022). https://doi.org/10.1002/pssa.202100448

    Article  Google Scholar 

  35. M Verma, S R Routray and G P Mishra Materials today proceedings 43 3420 (2021)

    Article  Google Scholar 

  36. Y Sun, A Perna and P Bermel IEEE Journal of Photovoltaics 9 437 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prasad Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Mishra, G.P. Recombination and mobility analysis of voltage preserved type-A InP multiple quantum well GaInP solar cell. Indian J Phys 96, 4119–4130 (2022). https://doi.org/10.1007/s12648-022-02352-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02352-w

Keywords

Navigation