Skip to main content
Log in

Quasinormal Modes of AdS Black Strings

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study the quasinormal modes of scalar waves of the black strings of the asymptotically AdS spacetime. Resonance modes of the quasinormal modes are computed analytically. In the following section, we present how the mass transfer of black strings in the semi-classical limit is linked to their highly damped oscillation frequencies. The Bohr–Sommerfeld quantization rule is used to extract the black string’s area and entropy spectra using the transition frequency of the strongly damped quasinormal modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S W Hawking Nature 248 30 (1974)

  2. S W Hawking Commun. Math. Phys. 43 199 (1975)

  3. J D Bekenstein Lett. al Nuovo Cimento 11 467 (1974)

  4. J D Bekenstein Lett. al Nuovo Cimento 4 737 (1972)

  5. J D Bekenstein Phys. Rev. D 7 2333 (1973)

  6. J D Bekenstein Lett. al Nuovo Cimento 11 467 (1974)

  7. J D Bekenstein, arXiv preprint arXiv:9710076 [gr-qc] (1997)

  8. J D Bekenstein, arXiv preprint arXiv:9808028 [gr-qc](1998)

  9. L Y Jia, P J Mao and J R Ren Eur. Phys. J. C 71 1518 (2011)

  10. S Hod Eur. Phys. J. C 75 233 (2015)

  11. S Hod Phys. Rev. Lett. 81 4293 (1998)

  12. M Maggiore Phys. Rev. Lett. 100 141301 (2008)

  13. I Sakalli Eur. Phys. J. C 75 144 (2015)

  14. E Berti and V Cardoso Class. Quantum Grav. 26 163001(2009)

  15. I Sakalli and S F Mirekhtiary J. Exp. Theor. Phys. 117 656 (2013)

    Article  ADS  Google Scholar 

  16. S F Mirekhtiary and I Sakalli Commun. Theor. Phys. 61 558 (2014)

    Article  Google Scholar 

  17. I Sakalli, A Ovgun and F Mirekhtiary Int. J. Geom. Methods Mod. Phys. 11 1450074 (2014)

    Article  Google Scholar 

  18. S F Mirekhtiary (Doctoral dissertation: Eastern Mediterranean University) (2014)

  19. M Saleh, B B Thomas and T C Kofane Astrophys. Space Sci. 350 (2014)

  20. A Mandal and R Biswas Astrophys. Space Sci. 357 8 (2015)

    Article  ADS  Google Scholar 

  21. S F Mirekhtiary and I Sakalli Theor. Math. Phys. 198 455 (2019)

    Article  Google Scholar 

  22. C V Vishveshwara Nature 227 936 (1970)

  23. W H Press Astrophys. J. 170 105 (1971)

  24. H P Nollert Class. Quantum Grav. 16 159 (1999)

  25. I Sakalli and S F Mirekhtiary Astrophys. Space Sci. 350 727 (2014)

    Article  ADS  Google Scholar 

  26. G Kunstatter Phys. Rev. Lett. 90 161301 (2003)

  27. E Berti and K D Kokkotas Phys. Rev. D 71 124008 (2005)

  28. V Baibhav and E Berti Phys. Rev. D 97 044048 (2018)

  29. G Tokgoz and I Sakalli Adv. High Energy Phys. 2018 3270790 (2018)

    Article  Google Scholar 

  30. J H Horne and G T Horowitz Nuclear Phys. B 368 444 (1992)

    Article  ADS  Google Scholar 

  31. W G Anderson and N Kaloper Phys. Rev. D 52 4440 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  32. N Kaloper Phys. Rev. D 48 4658 (1993)

  33. C Bogdanos, C Charmousis, B Gouteraux and R Zegers J. High Energy Phys. 0910 037 (2009)

  34. G Compere, S De Buy, S Stotyn and A Virmani J. High Energy Phys. 1011 133 (2010)

  35. S H Hendi Phys. Rev. D 82 064040 (2010)

  36. R Mann, E Radu and C Stelea J. High Energy Phys. 09 073 (2006)

  37. C R Gen and Y-Z Zhang Phys. Rev. D 54 (1996)

  38. R M Wald General Relativity (Chicago: The University of Chicago Press) (1984)

  39. U Miyamoto and K Maeda Phys. Lett. B 664 103 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  40. S Chandrasekhar New York: Oxford University Press (1992)

  41. V Cardoso and P S Lemos Jose Class. Quantum Gravity 18 (2001)

  42. D J Qi Astrophys. Space Sci. 349 33 (2014)

  43. M Abramowitz and I A Stegun Handbook of mathematical functions (New York: Dover Publications) (1965)

    MATH  Google Scholar 

  44. I Sakalli Int. J. Mod. Phys. A 26 2263 (2011)

    Article  ADS  Google Scholar 

  45. I Sakalli Mod. Phys. Lett. A 28 1350109 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. S Hod, Phys. Rev. D 59 024014 (1998)

  47. J D Bekenstein and V F Mukhanov arXiv preprint arxiv:9505012 [gr-qc] (1995)

  48. V Ferrari and B Mashhoon Phys. Rev. Lett. 52 16 (1984)

    Article  Google Scholar 

  49. V Ferrari and B Mashhoon Phys. Rev.D 30 295 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  50. M S Churilova Eur. Phys. J. C 79 629 (2019)

  51. A Allahyari, H Firouzjahi and B Mashhoon Class. Quantum Gravity 37 055006 (2020)

  52. D J Liu, B Yang, Y J Zhai and X Z Li Class. Quantum Gravity 29,145009 (2012)

  53. K Lin, W L Qian, A B Pavan and E Abdalla Mod. Phys. Lett. A 32 1750134 (2017)

    ADS  Google Scholar 

  54. S P Kim arXiv:07094313 (2007)

  55. G T Horowitz and V E Hubeny Phys.Rev. D 62 024027 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Mirekhtiary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirekhtiary, F.S., Sakalli, I. Quasinormal Modes of AdS Black Strings. Indian J Phys 97, 1–6 (2023). https://doi.org/10.1007/s12648-021-02262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02262-3

Keywords

Navigation