Skip to main content
Log in

Propagation of nonlinear excitations of dust acoustic waves by a moving charged object in superthermal plasmas

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present the nonlinear propagation dynamics of dust acoustic wave (DAW) excitations due to charged moving object in a dusty plasma consisting of inertial dust fluid with electrons and ions having kappa velocity distribution. In the small amplitude limit, it is revealed that moving charge-induced plasma fluid equations are reduced to a forced Korteweg–de Vries (fKdV) equation. Time-dependent numerical simulation reveals the formation of precursor waves ahead of the forcing disturbance in the upstream region propagating at a faster speed with trailing wakes in the downstream region. The effects of superthermality of charged particles on nonlinear excitations are also investigated. Additionally, for arbitrary amplitude waves, the analysis is performed for stationary wave frame moving at the same velocity of the charged object to elucidate rich variety of soliton-like solutions: single peak soliton, the so-called W-shaped and pinned solitons depending on the variation of relevant plasma parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E C Whipple, T G Northrop and D A Mendis J. Geophys. Res. 90 7405 (1985)

    Article  ADS  Google Scholar 

  2. D A Mendis and M Rosenberg Annu. Rev. Astron. Astrophys. 32 419 (1994)

    Article  ADS  Google Scholar 

  3. S V Singh, N N Rao and P K Shukla J. Plasma Phys. 60 551 (1998)

    Article  ADS  Google Scholar 

  4. S V Singh, N N Rao and R Bharuthram Phys. Plasmas 5 2477 (1998)

    Article  ADS  Google Scholar 

  5. P K Shukla and A A Mamun Introduction to Dusty Plasma Physics (Institute of Physics, Bristol) (2002)

    Book  Google Scholar 

  6. R L Merlino and J Goree Phys. Today 57 32 (2004)

    Article  Google Scholar 

  7. L L Yadav, S V Singh and R Bharuthram J. Plasma Phys. 75 697 (2009)

    Article  ADS  Google Scholar 

  8. N N Rao, P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  9. S V Singh and N N Rao Phys. Lett. A 235 164 (1997); ibid. J. Plasma Phys. 60 541 (1998)

  10. A Barkan, R L Merlino and N D’Angelo Phys. Plasmas 2 3563 (1995)

    Article  ADS  Google Scholar 

  11. S V Singh and N N Rao Phys. Plasmas 5 94 (1998); ibid. 6 3157 (1999)

  12. S K Maharaj, R Bharuthram, S V Singh, S R Pillay and G S Lakhina Phys. Plasmas 15 113701 (2008)

    Article  ADS  Google Scholar 

  13. H Alinejad Phys. Lett. A 375 1005 (2011)

    Article  ADS  Google Scholar 

  14. P Chatterjee, B Das and C S Wong Indian J. Phys. 86 529 (2012)

    Article  ADS  Google Scholar 

  15. J Akter, N A Chowdhury, A Mannan and A A Mamun Indian J. Phys. (2021) https://doi.org/10.1007/s12648-020-01927-9

    Article  Google Scholar 

  16. A A Mamun, R A Cairns and P K Shukla Phys. Plasmas 3 702 (1996)

    Article  ADS  Google Scholar 

  17. R L Merlino, J R Heinrich, S -H Kim and J K Meyer Plasma Phys. Control. Fusion 54 124014 (2012)

    Article  ADS  Google Scholar 

  18. S K Tiwari, A Das, P Kaw and A Sen New J. Phys. 14 063008 (2012)

    Article  ADS  Google Scholar 

  19. L H Holthuijsen Waves in Oceanic and Coastal Waters (Cambridge University Press, Cambridge, UK) (2007)

    Book  Google Scholar 

  20. A J Hermans Water Waves and Ship Hydrodynamics, 2nd ed. (Springer, New York) (2011)

    Book  MATH  Google Scholar 

  21. T Akylas J. Fluid Mech. 141 455 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. H Huang Dynamics of Surface Waves in Coastal Waters (Springer, New York) (2010)

    Google Scholar 

  23. J R Sanmartin and S H Lam Phys. Fluids 14 62 (1971)

    Article  ADS  Google Scholar 

  24. E Engwall, A I Eriksson and J Forest Phys. Plasmas 13 062904 (2006)

    Article  ADS  Google Scholar 

  25. P Guio and H L Pecseli Phys. Plasmas 10 2667 (2003); P Guio, W J Miloch, H L Pécseli and J Trulsen Phys. Rev. E 78 016401 (2008)

  26. A Brattli, O Havnes and F Melandsø, Phys. Plasmas 9 958 (2002)

    Article  ADS  Google Scholar 

  27. S -J Lee, G T Yates and T Y Wu, J. Fluid Mech. 199 569 (1989)

    Article  ADS  Google Scholar 

  28. A Sen, S Tiwari, S Mishra and P Kaw, Adv. Space Res. 56 429 (2015)

    Article  ADS  Google Scholar 

  29. S Jaiswal, P Bandyopadhyay and A Sen, Phys. Rev. E 93 041201(R) (2016)

    Article  ADS  Google Scholar 

  30. G Arora, P Bandyopadhyay, M G Hariprasad and A. Sen Phys. Plasmas 26 093701 (2019)

    Article  ADS  Google Scholar 

  31. S K Tiwari and A Sen Phys. Plasmas 23 022301 (2016)

    Article  ADS  Google Scholar 

  32. G Arora, P Bandyopadhyay, M G Hariprasad and A Sen Phys. Rev. E 103 013201 (2021)

    Article  ADS  Google Scholar 

  33. S K Maharaj, S R Pillay, R Bharuthram, S V Singh and G S Lakhina Phys. Scr. T113 135 (2004)

    Article  ADS  Google Scholar 

  34. S V Singh and R Bharuthram IEEE Trans. Plasma Sci. 38 852 (2010)

    Article  ADS  Google Scholar 

  35. S V Singh J. Plasma Phys. 81 905810315 (2015)

    Article  Google Scholar 

  36. V M Vasyliunas J. Geophys. Res. 73 2839 (1968)

    Article  ADS  Google Scholar 

  37. M P Leubner J. Geophys. Res. 87 6335 (1982)

    Article  ADS  Google Scholar 

  38. M Krimigis, J F Carbary, E P Keath, T P Armstrong, L J Lanzerotti and G Gloeckler J. Geophys. Res. 88 8871 (1983)

    Article  ADS  Google Scholar 

  39. M R Collier and D C Hamilton Geophys. Res. Lett. 22 303 (1995)

    Article  ADS  Google Scholar 

  40. V Pierrard and J Lemaire J. Geophys. Res. 104 17021 (1999)

    Article  ADS  Google Scholar 

  41. M V Goldman, D L Newman and A Mangeney Phys. Rev. Lett. 99 145002 (2007)

    Article  ADS  Google Scholar 

  42. R. Ergun, B Carlson and M McFadden Geophys. Res. Lett. 25 2025 (1998)

    Article  ADS  Google Scholar 

  43. G Livadiotis and D J McComas Astrophys. J. 714 971 (2010)

    Article  ADS  Google Scholar 

  44. M A Hellberg and R L Mace Phys. Plasmas. 9 1495 (2002)

    Article  ADS  Google Scholar 

  45. T K Baluku, M A Hellberg, I Kourakis and N S Saini Phys. Plasmas 17 053702 (2010)

    Article  ADS  Google Scholar 

  46. H R Pakzad Indian J. Phys. 86 743 (2012)

    Article  ADS  Google Scholar 

  47. N S Saini, Y. Ghai and R. Kohli J. Geophys. Res. 121 5944 (2016)

    Article  Google Scholar 

  48. D Dutta and K S Goswami Indian J. Phys. 93 257 (2019)

    Article  ADS  Google Scholar 

  49. M Mehdipoor Eur. Phys. J. Plus 135 299 (2020)

    Article  Google Scholar 

  50. M R Gupta, S Sarkar, S Ghosh, M Debnath and M. Khan Phys. Rev. E 63 046406 (2001)

    Article  ADS  Google Scholar 

  51. S Ghosh, S Sarkar, M Khan, K Avinash and M R Gupta Phys. Plasmas. 10 977 (2003)

    Article  ADS  Google Scholar 

  52. Z J -Xiao and G B -Ling, Commun. Theor. Phys. 52 279 (2009)

    Article  ADS  Google Scholar 

  53. V Yu Belashov and S V Vladimirov Solitary Waves in Dispersive Complex Media (Springer-Verlag, Berlin) (2005)

    Book  MATH  Google Scholar 

  54. V I Karpman and E M Maslov Sov. Phys. JETP 46 281 (1977); 48 252 (1978)

  55. S Ghosh, M R Gupta, N Chakrabarti and M Chaudhuri Phys. Rev. E 83 066406 (2011)

    Article  ADS  Google Scholar 

  56. B J Binder, M G Blyth and S Balasuriya Europhys. Lett. 105 44003 (2014)

    Article  ADS  Google Scholar 

  57. M Maksimovic, V Pierrard and P Riley Geophys. Res. Lett. 24 1151 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, S., Sahu, B. Propagation of nonlinear excitations of dust acoustic waves by a moving charged object in superthermal plasmas. Indian J Phys 96, 3023–3030 (2022). https://doi.org/10.1007/s12648-021-02224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02224-9

Keywords

Navigation